Feature Correlation Hypergraph: Exploiting High-order Potentials for Multimodal Recognition

In computer vision and multimedia analysis, it is common to use multiple features (or multimodal features) to represent an object. For example, to well characterize a natural scene image, we typically extract a set of visual features to represent its color, texture, and shape. However, it is challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2014-08, Vol.44 (8), p.1408-1419
Hauptverfasser: Zhang, Luming, Gao, Yue, Hong, Chaoqun, Feng, Yinfu, Zhu, Jianke, Cai, Deng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1419
container_issue 8
container_start_page 1408
container_title IEEE transactions on cybernetics
container_volume 44
creator Zhang, Luming
Gao, Yue
Hong, Chaoqun
Feng, Yinfu
Zhu, Jianke
Cai, Deng
description In computer vision and multimedia analysis, it is common to use multiple features (or multimodal features) to represent an object. For example, to well characterize a natural scene image, we typically extract a set of visual features to represent its color, texture, and shape. However, it is challenging to integrate multimodal features optimally. Since they are usually high-order correlated, e.g., the histogram of gradient (HOG), bag of scale invariant feature transform descriptors, and wavelets are closely related because they collaboratively reflect the image texture. Nevertheless, the existing algorithms fail to capture the high-order correlation among multimodal features. To solve this problem, we present a new multimodal feature integration framework. Particularly, we first define a new measure to capture the high-order correlation among the multimodal features, which can be deemed as a direct extension of the previous binary correlation. Therefore, we construct a feature correlation hypergraph (FCH) to model the high-order relations among multimodal features. Finally, a clustering algorithm is performed on FCH to group the original multimodal features into a set of partitions. Moreover, a multiclass boosting strategy is developed to obtain a strong classifier by combining the weak classifiers learned from each partition. The experimental results on seven popular datasets show the effectiveness of our approach.
doi_str_mv 10.1109/TCYB.2013.2285219
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1547228987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6650064</ieee_id><sourcerecordid>1559689052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-1bd6a442ce5b4eab0632c4c008fe34750f768a8ba8ccdac9fd6a52e0e9d0c0bd3</originalsourceid><addsrcrecordid>eNqNkUFLwzAUx4Mobug-gAhS8OKlM0mTNvGmYzpBUWQexENJ09cto2tq2oL79qZs7uDJXBKS3_vzXn4InRE8JgTL6_nk425MMYnGlApOiTxAQ0piEVKa8MP9OU4GaNQ0K-yX8FdSHKMBZUSwROIh-rwH1XYOgol1DkrVGlsFs00NbuFUvbwJpt91aU1rqkUwM4tlaF0OLni1LVStUWUTFNYFz13ZmrXNVRm8gbaLyvQ5p-io8ASMdvsJer-fziez8Onl4XFy-xTqSNA2JFkeK8aoBp4xUBmOI6qZ9u0WELGE4yKJhRKZElrnSsvC45wCBpljjbM8OkFX29za2a8OmjZdm0ZDWaoKbNekhHPpB8ec_gNlgkgmZeLRyz_oynau8oP0VOI_XYqeIltKO9s0Doq0dmat3CYlOO09pb2ntPeU7jz5motdcpetId9X_FrxwPkWMACwf45jjnHMoh9giZcm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547228987</pqid></control><display><type>article</type><title>Feature Correlation Hypergraph: Exploiting High-order Potentials for Multimodal Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Luming ; Gao, Yue ; Hong, Chaoqun ; Feng, Yinfu ; Zhu, Jianke ; Cai, Deng</creator><creatorcontrib>Zhang, Luming ; Gao, Yue ; Hong, Chaoqun ; Feng, Yinfu ; Zhu, Jianke ; Cai, Deng</creatorcontrib><description>In computer vision and multimedia analysis, it is common to use multiple features (or multimodal features) to represent an object. For example, to well characterize a natural scene image, we typically extract a set of visual features to represent its color, texture, and shape. However, it is challenging to integrate multimodal features optimally. Since they are usually high-order correlated, e.g., the histogram of gradient (HOG), bag of scale invariant feature transform descriptors, and wavelets are closely related because they collaboratively reflect the image texture. Nevertheless, the existing algorithms fail to capture the high-order correlation among multimodal features. To solve this problem, we present a new multimodal feature integration framework. Particularly, we first define a new measure to capture the high-order correlation among the multimodal features, which can be deemed as a direct extension of the previous binary correlation. Therefore, we construct a feature correlation hypergraph (FCH) to model the high-order relations among multimodal features. Finally, a clustering algorithm is performed on FCH to group the original multimodal features into a set of partitions. Moreover, a multiclass boosting strategy is developed to obtain a strong classifier by combining the weak classifiers learned from each partition. The experimental results on seven popular datasets show the effectiveness of our approach.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2013.2285219</identifier><identifier>PMID: 24184790</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Boosting ; Classifiers ; Correlation ; Correlation analysis ; Entropy ; Feature correlation hypergraph ; high-order relations ; Joints ; Kernel ; multimodal features ; Partitions ; Support vector machines ; Surface layer ; Texture ; Vectors</subject><ispartof>IEEE transactions on cybernetics, 2014-08, Vol.44 (8), p.1408-1419</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-1bd6a442ce5b4eab0632c4c008fe34750f768a8ba8ccdac9fd6a52e0e9d0c0bd3</citedby><cites>FETCH-LOGICAL-c382t-1bd6a442ce5b4eab0632c4c008fe34750f768a8ba8ccdac9fd6a52e0e9d0c0bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6650064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6650064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24184790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Luming</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Hong, Chaoqun</creatorcontrib><creatorcontrib>Feng, Yinfu</creatorcontrib><creatorcontrib>Zhu, Jianke</creatorcontrib><creatorcontrib>Cai, Deng</creatorcontrib><title>Feature Correlation Hypergraph: Exploiting High-order Potentials for Multimodal Recognition</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>In computer vision and multimedia analysis, it is common to use multiple features (or multimodal features) to represent an object. For example, to well characterize a natural scene image, we typically extract a set of visual features to represent its color, texture, and shape. However, it is challenging to integrate multimodal features optimally. Since they are usually high-order correlated, e.g., the histogram of gradient (HOG), bag of scale invariant feature transform descriptors, and wavelets are closely related because they collaboratively reflect the image texture. Nevertheless, the existing algorithms fail to capture the high-order correlation among multimodal features. To solve this problem, we present a new multimodal feature integration framework. Particularly, we first define a new measure to capture the high-order correlation among the multimodal features, which can be deemed as a direct extension of the previous binary correlation. Therefore, we construct a feature correlation hypergraph (FCH) to model the high-order relations among multimodal features. Finally, a clustering algorithm is performed on FCH to group the original multimodal features into a set of partitions. Moreover, a multiclass boosting strategy is developed to obtain a strong classifier by combining the weak classifiers learned from each partition. The experimental results on seven popular datasets show the effectiveness of our approach.</description><subject>Algorithms</subject><subject>Boosting</subject><subject>Classifiers</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Entropy</subject><subject>Feature correlation hypergraph</subject><subject>high-order relations</subject><subject>Joints</subject><subject>Kernel</subject><subject>multimodal features</subject><subject>Partitions</subject><subject>Support vector machines</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Vectors</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkUFLwzAUx4Mobug-gAhS8OKlM0mTNvGmYzpBUWQexENJ09cto2tq2oL79qZs7uDJXBKS3_vzXn4InRE8JgTL6_nk425MMYnGlApOiTxAQ0piEVKa8MP9OU4GaNQ0K-yX8FdSHKMBZUSwROIh-rwH1XYOgol1DkrVGlsFs00NbuFUvbwJpt91aU1rqkUwM4tlaF0OLni1LVStUWUTFNYFz13ZmrXNVRm8gbaLyvQ5p-io8ASMdvsJer-fziez8Onl4XFy-xTqSNA2JFkeK8aoBp4xUBmOI6qZ9u0WELGE4yKJhRKZElrnSsvC45wCBpljjbM8OkFX29za2a8OmjZdm0ZDWaoKbNekhHPpB8ec_gNlgkgmZeLRyz_oynau8oP0VOI_XYqeIltKO9s0Doq0dmat3CYlOO09pb2ntPeU7jz5motdcpetId9X_FrxwPkWMACwf45jjnHMoh9giZcm</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Zhang, Luming</creator><creator>Gao, Yue</creator><creator>Hong, Chaoqun</creator><creator>Feng, Yinfu</creator><creator>Zhu, Jianke</creator><creator>Cai, Deng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20140801</creationdate><title>Feature Correlation Hypergraph: Exploiting High-order Potentials for Multimodal Recognition</title><author>Zhang, Luming ; Gao, Yue ; Hong, Chaoqun ; Feng, Yinfu ; Zhu, Jianke ; Cai, Deng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-1bd6a442ce5b4eab0632c4c008fe34750f768a8ba8ccdac9fd6a52e0e9d0c0bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Boosting</topic><topic>Classifiers</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Entropy</topic><topic>Feature correlation hypergraph</topic><topic>high-order relations</topic><topic>Joints</topic><topic>Kernel</topic><topic>multimodal features</topic><topic>Partitions</topic><topic>Support vector machines</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Luming</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Hong, Chaoqun</creatorcontrib><creatorcontrib>Feng, Yinfu</creatorcontrib><creatorcontrib>Zhu, Jianke</creatorcontrib><creatorcontrib>Cai, Deng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Luming</au><au>Gao, Yue</au><au>Hong, Chaoqun</au><au>Feng, Yinfu</au><au>Zhu, Jianke</au><au>Cai, Deng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Correlation Hypergraph: Exploiting High-order Potentials for Multimodal Recognition</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>44</volume><issue>8</issue><spage>1408</spage><epage>1419</epage><pages>1408-1419</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>In computer vision and multimedia analysis, it is common to use multiple features (or multimodal features) to represent an object. For example, to well characterize a natural scene image, we typically extract a set of visual features to represent its color, texture, and shape. However, it is challenging to integrate multimodal features optimally. Since they are usually high-order correlated, e.g., the histogram of gradient (HOG), bag of scale invariant feature transform descriptors, and wavelets are closely related because they collaboratively reflect the image texture. Nevertheless, the existing algorithms fail to capture the high-order correlation among multimodal features. To solve this problem, we present a new multimodal feature integration framework. Particularly, we first define a new measure to capture the high-order correlation among the multimodal features, which can be deemed as a direct extension of the previous binary correlation. Therefore, we construct a feature correlation hypergraph (FCH) to model the high-order relations among multimodal features. Finally, a clustering algorithm is performed on FCH to group the original multimodal features into a set of partitions. Moreover, a multiclass boosting strategy is developed to obtain a strong classifier by combining the weak classifiers learned from each partition. The experimental results on seven popular datasets show the effectiveness of our approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24184790</pmid><doi>10.1109/TCYB.2013.2285219</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2014-08, Vol.44 (8), p.1408-1419
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_journals_1547228987
source IEEE Electronic Library (IEL)
subjects Algorithms
Boosting
Classifiers
Correlation
Correlation analysis
Entropy
Feature correlation hypergraph
high-order relations
Joints
Kernel
multimodal features
Partitions
Support vector machines
Surface layer
Texture
Vectors
title Feature Correlation Hypergraph: Exploiting High-order Potentials for Multimodal Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Correlation%20Hypergraph:%20Exploiting%20High-order%20Potentials%20for%20Multimodal%20Recognition&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Zhang,%20Luming&rft.date=2014-08-01&rft.volume=44&rft.issue=8&rft.spage=1408&rft.epage=1419&rft.pages=1408-1419&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2013.2285219&rft_dat=%3Cproquest_RIE%3E1559689052%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547228987&rft_id=info:pmid/24184790&rft_ieee_id=6650064&rfr_iscdi=true