Distributed and Asynchronous Data Collection in Cognitive Radio Networks with Fairness Consideration

As a promising communication paradigm, Cognitive Radio Networks (CRNs) have paved a road for Secondary Users (SUs) to opportunistically exploit unused licensed spectrum without causing unacceptable interference to Primary Users (PUs). In this paper, we study the distributed data collection problem f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2014-08, Vol.25 (8), p.2020-2029
Hauptverfasser: Zhipeng Cai, Shouling Ji, Jing He, Lin Wei, Bourgeois, Anu G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2029
container_issue 8
container_start_page 2020
container_title IEEE transactions on parallel and distributed systems
container_volume 25
creator Zhipeng Cai
Shouling Ji
Jing He
Lin Wei
Bourgeois, Anu G.
description As a promising communication paradigm, Cognitive Radio Networks (CRNs) have paved a road for Secondary Users (SUs) to opportunistically exploit unused licensed spectrum without causing unacceptable interference to Primary Users (PUs). In this paper, we study the distributed data collection problem for asynchronous CRNs, which has not been addressed before. We study the Proper Carrier-sensing Range (PCR) for SUs. By working with this PCR, an SU can successfully conduct data transmission without disturbing the activities of PUs and other SUs. Subsequently, based on the PCR, we propose an Asynchronous Distributed Data Collection (ADDC) algorithm with fairness consideration for CRNs. ADDC collects a snapshot of data to the base station in a distributed manner without the time synchronization requirement. The algorithm is scalable and more practical compared with centralized and synchronized algorithms. Through comprehensive theoretical analysis, we show that ADDC is order-optimal in terms of delay and capacity, as long as an SU has a positive probability to access the spectrum. Furthermore, we extend ADDC to deal with the continuous data collection issue, and analyze the delay and capacity performances of ADDC for continuous data collection, which are also proven to be order-optimal. Finally, extensive simulation results indicate that ADDC can effectively accomplish a data collection task and significantly reduce data collection delay.
doi_str_mv 10.1109/TPDS.2013.75
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1546145559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6482131</ieee_id><sourcerecordid>1559688855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1672de2bbb52d2ee791adc6f74f84589821c5c7c4fa4024e21918998dcd928cd3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhiMEElDY2FgssTCQYjt2Yo-opYCEAPExR659AZfUBtul4t_jqIiB6e6k5073PkVxRPCYECzPnx-mT2OKSTVu-FaxRzgXJSWi2s49ZryUlMjdYj_GBcaEccz2CjO1MQU7XyUwSDmDLuK302_BO7-KaKqSQhPf96CT9Q5Zl6dXZ5P9AvSojPXoDtLah_eI1ja9oZmywUGMGXPRGghq2DsodjrVRzj8raPiZXb5PLkub--vbiYXt6WuSJ1KUjfUAJ3P55waCtBIooyuu4Z1gnEhBSWa60azTjFMGeQ0REgpjDaSCm2qUXG6ufsR_OcKYmqXNmroe-Ugx2mzEFkLITjP6Mk_dOFXweXvMsXqbCezmTrbUDr4GAN07UewSxW-W4LbQXk7KG8H5W0zHD3e4BYA_tCa5ccrUv0Adql9PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546145559</pqid></control><display><type>article</type><title>Distributed and Asynchronous Data Collection in Cognitive Radio Networks with Fairness Consideration</title><source>IEEE Xplore (Online service)</source><creator>Zhipeng Cai ; Shouling Ji ; Jing He ; Lin Wei ; Bourgeois, Anu G.</creator><creatorcontrib>Zhipeng Cai ; Shouling Ji ; Jing He ; Lin Wei ; Bourgeois, Anu G.</creatorcontrib><description>As a promising communication paradigm, Cognitive Radio Networks (CRNs) have paved a road for Secondary Users (SUs) to opportunistically exploit unused licensed spectrum without causing unacceptable interference to Primary Users (PUs). In this paper, we study the distributed data collection problem for asynchronous CRNs, which has not been addressed before. We study the Proper Carrier-sensing Range (PCR) for SUs. By working with this PCR, an SU can successfully conduct data transmission without disturbing the activities of PUs and other SUs. Subsequently, based on the PCR, we propose an Asynchronous Distributed Data Collection (ADDC) algorithm with fairness consideration for CRNs. ADDC collects a snapshot of data to the base station in a distributed manner without the time synchronization requirement. The algorithm is scalable and more practical compared with centralized and synchronized algorithms. Through comprehensive theoretical analysis, we show that ADDC is order-optimal in terms of delay and capacity, as long as an SU has a positive probability to access the spectrum. Furthermore, we extend ADDC to deal with the continuous data collection issue, and analyze the delay and capacity performances of ADDC for continuous data collection, which are also proven to be order-optimal. Finally, extensive simulation results indicate that ADDC can effectively accomplish a data collection task and significantly reduce data collection delay.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2013.75</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; asynchronous wireless network ; Base stations ; capacity ; Cognitive radio ; Cognitive radio networks ; continuous data collection ; Data acquisition ; Data collection ; Data communication ; Delay ; Delays ; distributed algorithm ; Interference ; Networks ; Radio networks ; snapshot data collection ; Stations ; Synchronization ; Tasks ; Time synchronization ; Wireless networks</subject><ispartof>IEEE transactions on parallel and distributed systems, 2014-08, Vol.25 (8), p.2020-2029</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1672de2bbb52d2ee791adc6f74f84589821c5c7c4fa4024e21918998dcd928cd3</citedby><cites>FETCH-LOGICAL-c316t-1672de2bbb52d2ee791adc6f74f84589821c5c7c4fa4024e21918998dcd928cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6482131$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6482131$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhipeng Cai</creatorcontrib><creatorcontrib>Shouling Ji</creatorcontrib><creatorcontrib>Jing He</creatorcontrib><creatorcontrib>Lin Wei</creatorcontrib><creatorcontrib>Bourgeois, Anu G.</creatorcontrib><title>Distributed and Asynchronous Data Collection in Cognitive Radio Networks with Fairness Consideration</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>As a promising communication paradigm, Cognitive Radio Networks (CRNs) have paved a road for Secondary Users (SUs) to opportunistically exploit unused licensed spectrum without causing unacceptable interference to Primary Users (PUs). In this paper, we study the distributed data collection problem for asynchronous CRNs, which has not been addressed before. We study the Proper Carrier-sensing Range (PCR) for SUs. By working with this PCR, an SU can successfully conduct data transmission without disturbing the activities of PUs and other SUs. Subsequently, based on the PCR, we propose an Asynchronous Distributed Data Collection (ADDC) algorithm with fairness consideration for CRNs. ADDC collects a snapshot of data to the base station in a distributed manner without the time synchronization requirement. The algorithm is scalable and more practical compared with centralized and synchronized algorithms. Through comprehensive theoretical analysis, we show that ADDC is order-optimal in terms of delay and capacity, as long as an SU has a positive probability to access the spectrum. Furthermore, we extend ADDC to deal with the continuous data collection issue, and analyze the delay and capacity performances of ADDC for continuous data collection, which are also proven to be order-optimal. Finally, extensive simulation results indicate that ADDC can effectively accomplish a data collection task and significantly reduce data collection delay.</description><subject>Algorithms</subject><subject>asynchronous wireless network</subject><subject>Base stations</subject><subject>capacity</subject><subject>Cognitive radio</subject><subject>Cognitive radio networks</subject><subject>continuous data collection</subject><subject>Data acquisition</subject><subject>Data collection</subject><subject>Data communication</subject><subject>Delay</subject><subject>Delays</subject><subject>distributed algorithm</subject><subject>Interference</subject><subject>Networks</subject><subject>Radio networks</subject><subject>snapshot data collection</subject><subject>Stations</subject><subject>Synchronization</subject><subject>Tasks</subject><subject>Time synchronization</subject><subject>Wireless networks</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhiMEElDY2FgssTCQYjt2Yo-opYCEAPExR659AZfUBtul4t_jqIiB6e6k5073PkVxRPCYECzPnx-mT2OKSTVu-FaxRzgXJSWi2s49ZryUlMjdYj_GBcaEccz2CjO1MQU7XyUwSDmDLuK302_BO7-KaKqSQhPf96CT9Q5Zl6dXZ5P9AvSojPXoDtLah_eI1ja9oZmywUGMGXPRGghq2DsodjrVRzj8raPiZXb5PLkub--vbiYXt6WuSJ1KUjfUAJ3P55waCtBIooyuu4Z1gnEhBSWa60azTjFMGeQ0REgpjDaSCm2qUXG6ufsR_OcKYmqXNmroe-Ugx2mzEFkLITjP6Mk_dOFXweXvMsXqbCezmTrbUDr4GAN07UewSxW-W4LbQXk7KG8H5W0zHD3e4BYA_tCa5ccrUv0Adql9PQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Zhipeng Cai</creator><creator>Shouling Ji</creator><creator>Jing He</creator><creator>Lin Wei</creator><creator>Bourgeois, Anu G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140801</creationdate><title>Distributed and Asynchronous Data Collection in Cognitive Radio Networks with Fairness Consideration</title><author>Zhipeng Cai ; Shouling Ji ; Jing He ; Lin Wei ; Bourgeois, Anu G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1672de2bbb52d2ee791adc6f74f84589821c5c7c4fa4024e21918998dcd928cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>asynchronous wireless network</topic><topic>Base stations</topic><topic>capacity</topic><topic>Cognitive radio</topic><topic>Cognitive radio networks</topic><topic>continuous data collection</topic><topic>Data acquisition</topic><topic>Data collection</topic><topic>Data communication</topic><topic>Delay</topic><topic>Delays</topic><topic>distributed algorithm</topic><topic>Interference</topic><topic>Networks</topic><topic>Radio networks</topic><topic>snapshot data collection</topic><topic>Stations</topic><topic>Synchronization</topic><topic>Tasks</topic><topic>Time synchronization</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhipeng Cai</creatorcontrib><creatorcontrib>Shouling Ji</creatorcontrib><creatorcontrib>Jing He</creatorcontrib><creatorcontrib>Lin Wei</creatorcontrib><creatorcontrib>Bourgeois, Anu G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhipeng Cai</au><au>Shouling Ji</au><au>Jing He</au><au>Lin Wei</au><au>Bourgeois, Anu G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed and Asynchronous Data Collection in Cognitive Radio Networks with Fairness Consideration</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>25</volume><issue>8</issue><spage>2020</spage><epage>2029</epage><pages>2020-2029</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>As a promising communication paradigm, Cognitive Radio Networks (CRNs) have paved a road for Secondary Users (SUs) to opportunistically exploit unused licensed spectrum without causing unacceptable interference to Primary Users (PUs). In this paper, we study the distributed data collection problem for asynchronous CRNs, which has not been addressed before. We study the Proper Carrier-sensing Range (PCR) for SUs. By working with this PCR, an SU can successfully conduct data transmission without disturbing the activities of PUs and other SUs. Subsequently, based on the PCR, we propose an Asynchronous Distributed Data Collection (ADDC) algorithm with fairness consideration for CRNs. ADDC collects a snapshot of data to the base station in a distributed manner without the time synchronization requirement. The algorithm is scalable and more practical compared with centralized and synchronized algorithms. Through comprehensive theoretical analysis, we show that ADDC is order-optimal in terms of delay and capacity, as long as an SU has a positive probability to access the spectrum. Furthermore, we extend ADDC to deal with the continuous data collection issue, and analyze the delay and capacity performances of ADDC for continuous data collection, which are also proven to be order-optimal. Finally, extensive simulation results indicate that ADDC can effectively accomplish a data collection task and significantly reduce data collection delay.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2013.75</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2014-08, Vol.25 (8), p.2020-2029
issn 1045-9219
1558-2183
language eng
recordid cdi_proquest_journals_1546145559
source IEEE Xplore (Online service)
subjects Algorithms
asynchronous wireless network
Base stations
capacity
Cognitive radio
Cognitive radio networks
continuous data collection
Data acquisition
Data collection
Data communication
Delay
Delays
distributed algorithm
Interference
Networks
Radio networks
snapshot data collection
Stations
Synchronization
Tasks
Time synchronization
Wireless networks
title Distributed and Asynchronous Data Collection in Cognitive Radio Networks with Fairness Consideration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20and%20Asynchronous%20Data%20Collection%20in%20Cognitive%20Radio%20Networks%20with%20Fairness%20Consideration&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Zhipeng%20Cai&rft.date=2014-08-01&rft.volume=25&rft.issue=8&rft.spage=2020&rft.epage=2029&rft.pages=2020-2029&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2013.75&rft_dat=%3Cproquest_RIE%3E1559688855%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546145559&rft_id=info:pmid/&rft_ieee_id=6482131&rfr_iscdi=true