Controlling Buoyancy-Driven Profiling Floats for Applications in Ocean Observation
Establishing a persistent presence in the ocean with an autonomous underwater vehicle (AUV) capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of vehicles that can only control their depth in the water col...
Gespeichert in:
Veröffentlicht in: | IEEE journal of oceanic engineering 2014-07, Vol.39 (3), p.571-586 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 586 |
---|---|
container_issue | 3 |
container_start_page | 571 |
container_title | IEEE journal of oceanic engineering |
container_volume | 39 |
creator | Smith, Ryan N. Huynh, Van T. |
description | Establishing a persistent presence in the ocean with an autonomous underwater vehicle (AUV) capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of vehicles that can only control their depth in the water column for such extended deployments. We present a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy and enables general control for these profiling floats. The proposed method is based on experimentally validated techniques for utilizing ocean current models to control autonomous gliders. With the appropriate vertical actuation, and utilizing spatio-temporal variations in water speed and direction, we show that general controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution. A computed depth plan is generated with a model-predictive controller (MPC), and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA, USA, that show encouraging results in the ability of a drifting vehicle to reach a desired location. |
doi_str_mv | 10.1109/JOE.2013.2261895 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1546145504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6575220</ieee_id><sourcerecordid>3378379321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-c329addc90ce4bc824b46be1b06575691a3491ce0a7d97b5052e427db9e5a07d3</originalsourceid><addsrcrecordid>eNqFkc9PwyAUx4nRxDm9m3hp4sVLJ1Cg5Tjn5o8smTF6JpRSw9JBhXbJ_nvptnjw4oWXwOf7Ht_3BeAawQlCkN-_ruYTDFE2wZihgtMTMEKUFiliHJ2CEcwYSTmk_BxchLCGEBGS8xF4nznbedc0xn4lD73bSat26aM3W22TN-9qs39ZNE52IamdT6Zt2xglO-NsSIxNVkrLeJZB--3-9hKc1bIJ-upYx-BzMf-YPafL1dPLbLpMFcF5l6oMc1lVikOlSakKTErCSo1KyGhO469lRjhSGsq84nlJIcU6CquSayphXmVjcHfo23r33evQiY0JSjeNtNr1QSBG4i4YJuR_lFIKURxaRPT2D7p2vbfRSKQIQySSQ0N4oJR3IXhdi9abjfQ7gaAY8hAxDzHkIY55RMnNQWK01r_44BVjmP0AC1qFgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546145504</pqid></control><display><type>article</type><title>Controlling Buoyancy-Driven Profiling Floats for Applications in Ocean Observation</title><source>IEEE Electronic Library (IEL)</source><creator>Smith, Ryan N. ; Huynh, Van T.</creator><creatorcontrib>Smith, Ryan N. ; Huynh, Van T.</creatorcontrib><description>Establishing a persistent presence in the ocean with an autonomous underwater vehicle (AUV) capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of vehicles that can only control their depth in the water column for such extended deployments. We present a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy and enables general control for these profiling floats. The proposed method is based on experimentally validated techniques for utilizing ocean current models to control autonomous gliders. With the appropriate vertical actuation, and utilizing spatio-temporal variations in water speed and direction, we show that general controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution. A computed depth plan is generated with a model-predictive controller (MPC), and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA, USA, that show encouraging results in the ability of a drifting vehicle to reach a desired location.</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2013.2261895</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomous underwater vehicle (AUV) ; Autonomous underwater vehicles ; Computer simulation ; Controllability ; Floats ; Marine ; Mathematical model ; Mathematical models ; Missions ; model-predictive control (MPC) ; Ocean currents ; ocean model ; Oceans ; Open area test sites ; path planning ; Planning ; Predictive models ; Profiling ; profiling float ; Vehicles</subject><ispartof>IEEE journal of oceanic engineering, 2014-07, Vol.39 (3), p.571-586</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-c329addc90ce4bc824b46be1b06575691a3491ce0a7d97b5052e427db9e5a07d3</citedby><cites>FETCH-LOGICAL-c427t-c329addc90ce4bc824b46be1b06575691a3491ce0a7d97b5052e427db9e5a07d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6575220$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6575220$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Smith, Ryan N.</creatorcontrib><creatorcontrib>Huynh, Van T.</creatorcontrib><title>Controlling Buoyancy-Driven Profiling Floats for Applications in Ocean Observation</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>Establishing a persistent presence in the ocean with an autonomous underwater vehicle (AUV) capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of vehicles that can only control their depth in the water column for such extended deployments. We present a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy and enables general control for these profiling floats. The proposed method is based on experimentally validated techniques for utilizing ocean current models to control autonomous gliders. With the appropriate vertical actuation, and utilizing spatio-temporal variations in water speed and direction, we show that general controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution. A computed depth plan is generated with a model-predictive controller (MPC), and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA, USA, that show encouraging results in the ability of a drifting vehicle to reach a desired location.</description><subject>Autonomous underwater vehicle (AUV)</subject><subject>Autonomous underwater vehicles</subject><subject>Computer simulation</subject><subject>Controllability</subject><subject>Floats</subject><subject>Marine</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Missions</subject><subject>model-predictive control (MPC)</subject><subject>Ocean currents</subject><subject>ocean model</subject><subject>Oceans</subject><subject>Open area test sites</subject><subject>path planning</subject><subject>Planning</subject><subject>Predictive models</subject><subject>Profiling</subject><subject>profiling float</subject><subject>Vehicles</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkc9PwyAUx4nRxDm9m3hp4sVLJ1Cg5Tjn5o8smTF6JpRSw9JBhXbJ_nvptnjw4oWXwOf7Ht_3BeAawQlCkN-_ruYTDFE2wZihgtMTMEKUFiliHJ2CEcwYSTmk_BxchLCGEBGS8xF4nznbedc0xn4lD73bSat26aM3W22TN-9qs39ZNE52IamdT6Zt2xglO-NsSIxNVkrLeJZB--3-9hKc1bIJ-upYx-BzMf-YPafL1dPLbLpMFcF5l6oMc1lVikOlSakKTErCSo1KyGhO469lRjhSGsq84nlJIcU6CquSayphXmVjcHfo23r33evQiY0JSjeNtNr1QSBG4i4YJuR_lFIKURxaRPT2D7p2vbfRSKQIQySSQ0N4oJR3IXhdi9abjfQ7gaAY8hAxDzHkIY55RMnNQWK01r_44BVjmP0AC1qFgA</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Smith, Ryan N.</creator><creator>Huynh, Van T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20140701</creationdate><title>Controlling Buoyancy-Driven Profiling Floats for Applications in Ocean Observation</title><author>Smith, Ryan N. ; Huynh, Van T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-c329addc90ce4bc824b46be1b06575691a3491ce0a7d97b5052e427db9e5a07d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Autonomous underwater vehicle (AUV)</topic><topic>Autonomous underwater vehicles</topic><topic>Computer simulation</topic><topic>Controllability</topic><topic>Floats</topic><topic>Marine</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Missions</topic><topic>model-predictive control (MPC)</topic><topic>Ocean currents</topic><topic>ocean model</topic><topic>Oceans</topic><topic>Open area test sites</topic><topic>path planning</topic><topic>Planning</topic><topic>Predictive models</topic><topic>Profiling</topic><topic>profiling float</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Ryan N.</creatorcontrib><creatorcontrib>Huynh, Van T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Smith, Ryan N.</au><au>Huynh, Van T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Buoyancy-Driven Profiling Floats for Applications in Ocean Observation</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>39</volume><issue>3</issue><spage>571</spage><epage>586</epage><pages>571-586</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>Establishing a persistent presence in the ocean with an autonomous underwater vehicle (AUV) capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of vehicles that can only control their depth in the water column for such extended deployments. We present a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy and enables general control for these profiling floats. The proposed method is based on experimentally validated techniques for utilizing ocean current models to control autonomous gliders. With the appropriate vertical actuation, and utilizing spatio-temporal variations in water speed and direction, we show that general controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution. A computed depth plan is generated with a model-predictive controller (MPC), and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA, USA, that show encouraging results in the ability of a drifting vehicle to reach a desired location.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2013.2261895</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0364-9059 |
ispartof | IEEE journal of oceanic engineering, 2014-07, Vol.39 (3), p.571-586 |
issn | 0364-9059 1558-1691 |
language | eng |
recordid | cdi_proquest_journals_1546145504 |
source | IEEE Electronic Library (IEL) |
subjects | Autonomous underwater vehicle (AUV) Autonomous underwater vehicles Computer simulation Controllability Floats Marine Mathematical model Mathematical models Missions model-predictive control (MPC) Ocean currents ocean model Oceans Open area test sites path planning Planning Predictive models Profiling profiling float Vehicles |
title | Controlling Buoyancy-Driven Profiling Floats for Applications in Ocean Observation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Buoyancy-Driven%20Profiling%20Floats%20for%20Applications%20in%20Ocean%20Observation&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Smith,%20Ryan%20N.&rft.date=2014-07-01&rft.volume=39&rft.issue=3&rft.spage=571&rft.epage=586&rft.pages=571-586&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2013.2261895&rft_dat=%3Cproquest_RIE%3E3378379321%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546145504&rft_id=info:pmid/&rft_ieee_id=6575220&rfr_iscdi=true |