Monte Carlo Non-Local Means: Random Sampling for Large-Scale Image Filtering
We propose a randomized version of the nonlocal means (NLM) algorithm for large-scale image filtering. The new algorithm, called Monte Carlo nonlocal means (MCNLM), speeds up the classical NLM by computing a small subset of image patch distances, which are randomly selected according to a designed s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2014-08, Vol.23 (8), p.3711-3725 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3725 |
---|---|
container_issue | 8 |
container_start_page | 3711 |
container_title | IEEE transactions on image processing |
container_volume | 23 |
creator | Chan, Stanley H. Zickler, Todd Lu, Yue M. |
description | We propose a randomized version of the nonlocal means (NLM) algorithm for large-scale image filtering. The new algorithm, called Monte Carlo nonlocal means (MCNLM), speeds up the classical NLM by computing a small subset of image patch distances, which are randomly selected according to a designed sampling pattern. We make two contributions. First, we analyze the performance of the MCNLM algorithm and show that, for large images or large external image databases, the random outcomes of MCNLM are tightly concentrated around the deterministic full NLM result. In particular, our error probability bounds show that, at any given sampling ratio, the probability for MCNLM to have a large deviation from the original NLM solution decays exponentially as the size of the image or database grows. Second, we derive explicit formulas for optimal sampling patterns that minimize the error probability bound by exploiting partial knowledge of the pairwise similarity weights. Numerical experiments show that MCNLM is competitive with other state-of-the-art fast NLM algorithms for single-image denoising. When applied to denoising images using an external database containing ten billion patches, MCNLM returns a randomized solution that is within 0.2 dB of the full NLM solution while reducing the runtime by three orders of magnitude. |
doi_str_mv | 10.1109/TIP.2014.2327813 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1546144623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6824205</ieee_id><sourcerecordid>1553706651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-55ec73c5994afb7a049d79a947db5c3c2127c778b3394b19e68f21fb537efcc83</originalsourceid><addsrcrecordid>eNqNkUtrGzEURkVoyXtfKBRBCWQzjq6eo-yCycMwaUMe60Ej3zETZkaOZC_67ytjJ4GuupLgnvvBdw8h34BNAJi9eJ49TDgDOeGCmxLEHjkEK6FgTPIv-c-UKQxIe0COUnplmVSg98kBV8C5keKQVPdhXCGdutgH-iuMRRW86-k9ujFd0kc3zsNAn9yw7LtxQdsQaeXiAounTCGdDW6B9KbrVxjz_IR8bV2f8HT3HpOXm-vn6V1R_b6dTa-qwkujV4VS6I3wylrp2sY4Ju3cWGelmTfKC8-BG29M2QhhZQMWddlyaBslDLbel-KYnG9zlzG8rTGt6qFLHvvejRjWqQalrLaWGfE_qDBMawUZ_fkP-hrWccxFMiU1SKn5JpBtKR9DShHbehm7wcU_NbB6I6XOUuqNlHonJa_82AWvmwHnHwvvFjJwtgNcyndtoxt9lz65MhcxetP7-5brEPFjrEsuOVPiL4PAma8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546144623</pqid></control><display><type>article</type><title>Monte Carlo Non-Local Means: Random Sampling for Large-Scale Image Filtering</title><source>IEEE Electronic Library (IEL)</source><creator>Chan, Stanley H. ; Zickler, Todd ; Lu, Yue M.</creator><creatorcontrib>Chan, Stanley H. ; Zickler, Todd ; Lu, Yue M.</creatorcontrib><description>We propose a randomized version of the nonlocal means (NLM) algorithm for large-scale image filtering. The new algorithm, called Monte Carlo nonlocal means (MCNLM), speeds up the classical NLM by computing a small subset of image patch distances, which are randomly selected according to a designed sampling pattern. We make two contributions. First, we analyze the performance of the MCNLM algorithm and show that, for large images or large external image databases, the random outcomes of MCNLM are tightly concentrated around the deterministic full NLM result. In particular, our error probability bounds show that, at any given sampling ratio, the probability for MCNLM to have a large deviation from the original NLM solution decays exponentially as the size of the image or database grows. Second, we derive explicit formulas for optimal sampling patterns that minimize the error probability bound by exploiting partial knowledge of the pairwise similarity weights. Numerical experiments show that MCNLM is competitive with other state-of-the-art fast NLM algorithms for single-image denoising. When applied to denoising images using an external database containing ten billion patches, MCNLM returns a randomized solution that is within 0.2 dB of the full NLM solution while reducing the runtime by three orders of magnitude.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2014.2327813</identifier><identifier>PMID: 25122743</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Computational complexity ; Computer Simulation ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Filtering ; Filtration ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information, signal and communications theory ; Mathematical models ; Models, Statistical ; Monte Carlo Method ; Monte Carlo methods ; Noise measurement ; Noise reduction ; Numerical Analysis, Computer-Assisted ; Random variables ; Reproducibility of Results ; Sample Size ; Sampling ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal processing algorithms ; Signal Processing, Computer-Assisted ; Signal, noise ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2014-08, Vol.23 (8), p.3711-3725</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-55ec73c5994afb7a049d79a947db5c3c2127c778b3394b19e68f21fb537efcc83</citedby><cites>FETCH-LOGICAL-c476t-55ec73c5994afb7a049d79a947db5c3c2127c778b3394b19e68f21fb537efcc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6824205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6824205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28733768$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25122743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, Stanley H.</creatorcontrib><creatorcontrib>Zickler, Todd</creatorcontrib><creatorcontrib>Lu, Yue M.</creatorcontrib><title>Monte Carlo Non-Local Means: Random Sampling for Large-Scale Image Filtering</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We propose a randomized version of the nonlocal means (NLM) algorithm for large-scale image filtering. The new algorithm, called Monte Carlo nonlocal means (MCNLM), speeds up the classical NLM by computing a small subset of image patch distances, which are randomly selected according to a designed sampling pattern. We make two contributions. First, we analyze the performance of the MCNLM algorithm and show that, for large images or large external image databases, the random outcomes of MCNLM are tightly concentrated around the deterministic full NLM result. In particular, our error probability bounds show that, at any given sampling ratio, the probability for MCNLM to have a large deviation from the original NLM solution decays exponentially as the size of the image or database grows. Second, we derive explicit formulas for optimal sampling patterns that minimize the error probability bound by exploiting partial knowledge of the pairwise similarity weights. Numerical experiments show that MCNLM is competitive with other state-of-the-art fast NLM algorithms for single-image denoising. When applied to denoising images using an external database containing ten billion patches, MCNLM returns a randomized solution that is within 0.2 dB of the full NLM solution while reducing the runtime by three orders of magnitude.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computational complexity</subject><subject>Computer Simulation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Random variables</subject><subject>Reproducibility of Results</subject><subject>Sample Size</subject><subject>Sampling</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUtrGzEURkVoyXtfKBRBCWQzjq6eo-yCycMwaUMe60Ej3zETZkaOZC_67ytjJ4GuupLgnvvBdw8h34BNAJi9eJ49TDgDOeGCmxLEHjkEK6FgTPIv-c-UKQxIe0COUnplmVSg98kBV8C5keKQVPdhXCGdutgH-iuMRRW86-k9ujFd0kc3zsNAn9yw7LtxQdsQaeXiAounTCGdDW6B9KbrVxjz_IR8bV2f8HT3HpOXm-vn6V1R_b6dTa-qwkujV4VS6I3wylrp2sY4Ju3cWGelmTfKC8-BG29M2QhhZQMWddlyaBslDLbel-KYnG9zlzG8rTGt6qFLHvvejRjWqQalrLaWGfE_qDBMawUZ_fkP-hrWccxFMiU1SKn5JpBtKR9DShHbehm7wcU_NbB6I6XOUuqNlHonJa_82AWvmwHnHwvvFjJwtgNcyndtoxt9lz65MhcxetP7-5brEPFjrEsuOVPiL4PAma8</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Chan, Stanley H.</creator><creator>Zickler, Todd</creator><creator>Lu, Yue M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140801</creationdate><title>Monte Carlo Non-Local Means: Random Sampling for Large-Scale Image Filtering</title><author>Chan, Stanley H. ; Zickler, Todd ; Lu, Yue M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-55ec73c5994afb7a049d79a947db5c3c2127c778b3394b19e68f21fb537efcc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computational complexity</topic><topic>Computer Simulation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Random variables</topic><topic>Reproducibility of Results</topic><topic>Sample Size</topic><topic>Sampling</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Stanley H.</creatorcontrib><creatorcontrib>Zickler, Todd</creatorcontrib><creatorcontrib>Lu, Yue M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chan, Stanley H.</au><au>Zickler, Todd</au><au>Lu, Yue M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo Non-Local Means: Random Sampling for Large-Scale Image Filtering</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>23</volume><issue>8</issue><spage>3711</spage><epage>3725</epage><pages>3711-3725</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We propose a randomized version of the nonlocal means (NLM) algorithm for large-scale image filtering. The new algorithm, called Monte Carlo nonlocal means (MCNLM), speeds up the classical NLM by computing a small subset of image patch distances, which are randomly selected according to a designed sampling pattern. We make two contributions. First, we analyze the performance of the MCNLM algorithm and show that, for large images or large external image databases, the random outcomes of MCNLM are tightly concentrated around the deterministic full NLM result. In particular, our error probability bounds show that, at any given sampling ratio, the probability for MCNLM to have a large deviation from the original NLM solution decays exponentially as the size of the image or database grows. Second, we derive explicit formulas for optimal sampling patterns that minimize the error probability bound by exploiting partial knowledge of the pairwise similarity weights. Numerical experiments show that MCNLM is competitive with other state-of-the-art fast NLM algorithms for single-image denoising. When applied to denoising images using an external database containing ten billion patches, MCNLM returns a randomized solution that is within 0.2 dB of the full NLM solution while reducing the runtime by three orders of magnitude.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>25122743</pmid><doi>10.1109/TIP.2014.2327813</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2014-08, Vol.23 (8), p.3711-3725 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_1546144623 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Applied sciences Computational complexity Computer Simulation Detection, estimation, filtering, equalization, prediction Exact sciences and technology Filtering Filtration Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Information, signal and communications theory Mathematical models Models, Statistical Monte Carlo Method Monte Carlo methods Noise measurement Noise reduction Numerical Analysis, Computer-Assisted Random variables Reproducibility of Results Sample Size Sampling Sensitivity and Specificity Signal and communications theory Signal processing Signal processing algorithms Signal Processing, Computer-Assisted Signal, noise Telecommunications and information theory |
title | Monte Carlo Non-Local Means: Random Sampling for Large-Scale Image Filtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20Non-Local%20Means:%20Random%20Sampling%20for%20Large-Scale%20Image%20Filtering&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Chan,%20Stanley%20H.&rft.date=2014-08-01&rft.volume=23&rft.issue=8&rft.spage=3711&rft.epage=3725&rft.pages=3711-3725&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2014.2327813&rft_dat=%3Cproquest_RIE%3E1553706651%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546144623&rft_id=info:pmid/25122743&rft_ieee_id=6824205&rfr_iscdi=true |