Adaptive Bistable Stochastic Resonance Aided Spectrum Sensing

As a fundamental technology of cognitive radio, the spectrum sensing scheme is required to perform well in low signal-to-noise ratio (SNR) environments. In this paper, we propose a novel spectrum sensing method based on adaptive bistable stochastic resonance (A-BSR). By maximizing the SNR gain intro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2014-07, Vol.13 (7), p.4014-4024
Hauptverfasser: Wang, Jun, Ren, Xin, Zhang, Shaowen, Zhang, Daiming, Li, Husheng, Li, Shaoqian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4024
container_issue 7
container_start_page 4014
container_title IEEE transactions on wireless communications
container_volume 13
creator Wang, Jun
Ren, Xin
Zhang, Shaowen
Zhang, Daiming
Li, Husheng
Li, Shaoqian
description As a fundamental technology of cognitive radio, the spectrum sensing scheme is required to perform well in low signal-to-noise ratio (SNR) environments. In this paper, we propose a novel spectrum sensing method based on adaptive bistable stochastic resonance (A-BSR). By maximizing the SNR gain introduced by the BSR system, we first present an A-BSR system, of which the parameters can be adaptively adjusted based on the background noise. Then, we propose an A-BSR aided spectrum sensing scheme by passing the received signal through an A-BSR system to improve SNR. Based on the characteristics of A-BSR system output in frequency and time domains, we further propose two energy detection (ED)-based spectrum sensing algorithms. As the output of an A-BSR system given a noise input is concentrated around frequency zero, we propose a modified ED based on periodogram (P-ED) in frequency domain. Moreover, as the A-BSR system output for noise input has approximate constant amplitude in time domain, a novel deviation-based ED (D-ED) is proposed. Extensive simulation results show that the proposed A-BSR aided spectrum sensing scheme can achieve much better performance than the existing ED and BSR aided spectrum sensing schemes with fixed parameters, especially under very low SNR region.
doi_str_mv 10.1109/TWC.2014.2317779
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1546144457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6800106</ieee_id><sourcerecordid>3378369301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-242ad32d4c42c95ccbdb33f3737806b5d2391c4b6819aafc71aea9c53826aafe3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgIMoWKt3wUtABC-p-34cPNTiCwqCrXhcNpuJbkmTupsI_nu3tHjwNDPMN8PMl2XnGE0wRvpm-T6bEITZhFAspdQH2QhzrgpCmDrc5lQUmEhxnJ3EuEIIS8H5KLudVnbT-2_I73zsbdlAvug792lj713-CrFrbesgn_oKqnyxAdeHYZ0voI2-_TjNjmrbRDjbx3H29nC_nD0V85fH59l0XjhGUF8QRmxFScVS6TR3rqxKSmsqqVRIlLwiVGPHSqGwtrZ2Eluw2nGqiEg10HF2vdu7Cd3XALE3ax8dNI1toRuiSZ9qoZmUPKGX_9BVN4Q2XZcoJjBjjMtEoR3lQhdjgNpsgl_b8GMwMlufJvk0W59m7zONXO0X2-hsU4fkxce_OaIkwRyrxF3sOA8Af22hknIk6C9YVnzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546144457</pqid></control><display><type>article</type><title>Adaptive Bistable Stochastic Resonance Aided Spectrum Sensing</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jun ; Ren, Xin ; Zhang, Shaowen ; Zhang, Daiming ; Li, Husheng ; Li, Shaoqian</creator><creatorcontrib>Wang, Jun ; Ren, Xin ; Zhang, Shaowen ; Zhang, Daiming ; Li, Husheng ; Li, Shaoqian</creatorcontrib><description>As a fundamental technology of cognitive radio, the spectrum sensing scheme is required to perform well in low signal-to-noise ratio (SNR) environments. In this paper, we propose a novel spectrum sensing method based on adaptive bistable stochastic resonance (A-BSR). By maximizing the SNR gain introduced by the BSR system, we first present an A-BSR system, of which the parameters can be adaptively adjusted based on the background noise. Then, we propose an A-BSR aided spectrum sensing scheme by passing the received signal through an A-BSR system to improve SNR. Based on the characteristics of A-BSR system output in frequency and time domains, we further propose two energy detection (ED)-based spectrum sensing algorithms. As the output of an A-BSR system given a noise input is concentrated around frequency zero, we propose a modified ED based on periodogram (P-ED) in frequency domain. Moreover, as the A-BSR system output for noise input has approximate constant amplitude in time domain, a novel deviation-based ED (D-ED) is proposed. Extensive simulation results show that the proposed A-BSR aided spectrum sensing scheme can achieve much better performance than the existing ED and BSR aided spectrum sensing schemes with fixed parameters, especially under very low SNR region.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2014.2317779</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive systems ; Algorithms ; Applied sciences ; Approximation ; Cognitive radio ; Constants ; Detection ; Exact sciences and technology ; Frequency-domain analysis ; Information, signal and communications theory ; Noise ; Radiocommunication specific techniques ; Radiocommunications ; Sensors ; Signal and communications theory ; Signal representation. Spectral analysis ; Signal to noise ratio ; Signal, noise ; Stochastic resonance ; Telecommunications ; Telecommunications and information theory ; Time domain ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2014-07, Vol.13 (7), p.4014-4024</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-242ad32d4c42c95ccbdb33f3737806b5d2391c4b6819aafc71aea9c53826aafe3</citedby><cites>FETCH-LOGICAL-c420t-242ad32d4c42c95ccbdb33f3737806b5d2391c4b6819aafc71aea9c53826aafe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6800106$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6800106$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28721518$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Ren, Xin</creatorcontrib><creatorcontrib>Zhang, Shaowen</creatorcontrib><creatorcontrib>Zhang, Daiming</creatorcontrib><creatorcontrib>Li, Husheng</creatorcontrib><creatorcontrib>Li, Shaoqian</creatorcontrib><title>Adaptive Bistable Stochastic Resonance Aided Spectrum Sensing</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>As a fundamental technology of cognitive radio, the spectrum sensing scheme is required to perform well in low signal-to-noise ratio (SNR) environments. In this paper, we propose a novel spectrum sensing method based on adaptive bistable stochastic resonance (A-BSR). By maximizing the SNR gain introduced by the BSR system, we first present an A-BSR system, of which the parameters can be adaptively adjusted based on the background noise. Then, we propose an A-BSR aided spectrum sensing scheme by passing the received signal through an A-BSR system to improve SNR. Based on the characteristics of A-BSR system output in frequency and time domains, we further propose two energy detection (ED)-based spectrum sensing algorithms. As the output of an A-BSR system given a noise input is concentrated around frequency zero, we propose a modified ED based on periodogram (P-ED) in frequency domain. Moreover, as the A-BSR system output for noise input has approximate constant amplitude in time domain, a novel deviation-based ED (D-ED) is proposed. Extensive simulation results show that the proposed A-BSR aided spectrum sensing scheme can achieve much better performance than the existing ED and BSR aided spectrum sensing schemes with fixed parameters, especially under very low SNR region.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Cognitive radio</subject><subject>Constants</subject><subject>Detection</subject><subject>Exact sciences and technology</subject><subject>Frequency-domain analysis</subject><subject>Information, signal and communications theory</subject><subject>Noise</subject><subject>Radiocommunication specific techniques</subject><subject>Radiocommunications</subject><subject>Sensors</subject><subject>Signal and communications theory</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Stochastic resonance</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Time domain</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgIMoWKt3wUtABC-p-34cPNTiCwqCrXhcNpuJbkmTupsI_nu3tHjwNDPMN8PMl2XnGE0wRvpm-T6bEITZhFAspdQH2QhzrgpCmDrc5lQUmEhxnJ3EuEIIS8H5KLudVnbT-2_I73zsbdlAvug792lj713-CrFrbesgn_oKqnyxAdeHYZ0voI2-_TjNjmrbRDjbx3H29nC_nD0V85fH59l0XjhGUF8QRmxFScVS6TR3rqxKSmsqqVRIlLwiVGPHSqGwtrZ2Eluw2nGqiEg10HF2vdu7Cd3XALE3ax8dNI1toRuiSZ9qoZmUPKGX_9BVN4Q2XZcoJjBjjMtEoR3lQhdjgNpsgl_b8GMwMlufJvk0W59m7zONXO0X2-hsU4fkxce_OaIkwRyrxF3sOA8Af22hknIk6C9YVnzA</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Wang, Jun</creator><creator>Ren, Xin</creator><creator>Zhang, Shaowen</creator><creator>Zhang, Daiming</creator><creator>Li, Husheng</creator><creator>Li, Shaoqian</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140701</creationdate><title>Adaptive Bistable Stochastic Resonance Aided Spectrum Sensing</title><author>Wang, Jun ; Ren, Xin ; Zhang, Shaowen ; Zhang, Daiming ; Li, Husheng ; Li, Shaoqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-242ad32d4c42c95ccbdb33f3737806b5d2391c4b6819aafc71aea9c53826aafe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Cognitive radio</topic><topic>Constants</topic><topic>Detection</topic><topic>Exact sciences and technology</topic><topic>Frequency-domain analysis</topic><topic>Information, signal and communications theory</topic><topic>Noise</topic><topic>Radiocommunication specific techniques</topic><topic>Radiocommunications</topic><topic>Sensors</topic><topic>Signal and communications theory</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Stochastic resonance</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Time domain</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Ren, Xin</creatorcontrib><creatorcontrib>Zhang, Shaowen</creatorcontrib><creatorcontrib>Zhang, Daiming</creatorcontrib><creatorcontrib>Li, Husheng</creatorcontrib><creatorcontrib>Li, Shaoqian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jun</au><au>Ren, Xin</au><au>Zhang, Shaowen</au><au>Zhang, Daiming</au><au>Li, Husheng</au><au>Li, Shaoqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Bistable Stochastic Resonance Aided Spectrum Sensing</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>13</volume><issue>7</issue><spage>4014</spage><epage>4024</epage><pages>4014-4024</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>As a fundamental technology of cognitive radio, the spectrum sensing scheme is required to perform well in low signal-to-noise ratio (SNR) environments. In this paper, we propose a novel spectrum sensing method based on adaptive bistable stochastic resonance (A-BSR). By maximizing the SNR gain introduced by the BSR system, we first present an A-BSR system, of which the parameters can be adaptively adjusted based on the background noise. Then, we propose an A-BSR aided spectrum sensing scheme by passing the received signal through an A-BSR system to improve SNR. Based on the characteristics of A-BSR system output in frequency and time domains, we further propose two energy detection (ED)-based spectrum sensing algorithms. As the output of an A-BSR system given a noise input is concentrated around frequency zero, we propose a modified ED based on periodogram (P-ED) in frequency domain. Moreover, as the A-BSR system output for noise input has approximate constant amplitude in time domain, a novel deviation-based ED (D-ED) is proposed. Extensive simulation results show that the proposed A-BSR aided spectrum sensing scheme can achieve much better performance than the existing ED and BSR aided spectrum sensing schemes with fixed parameters, especially under very low SNR region.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2014.2317779</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2014-07, Vol.13 (7), p.4014-4024
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_1546144457
source IEEE Electronic Library (IEL)
subjects Adaptive systems
Algorithms
Applied sciences
Approximation
Cognitive radio
Constants
Detection
Exact sciences and technology
Frequency-domain analysis
Information, signal and communications theory
Noise
Radiocommunication specific techniques
Radiocommunications
Sensors
Signal and communications theory
Signal representation. Spectral analysis
Signal to noise ratio
Signal, noise
Stochastic resonance
Telecommunications
Telecommunications and information theory
Time domain
Wireless communication
title Adaptive Bistable Stochastic Resonance Aided Spectrum Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Bistable%20Stochastic%20Resonance%20Aided%20Spectrum%20Sensing&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Wang,%20Jun&rft.date=2014-07-01&rft.volume=13&rft.issue=7&rft.spage=4014&rft.epage=4024&rft.pages=4014-4024&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2014.2317779&rft_dat=%3Cproquest_RIE%3E3378369301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546144457&rft_id=info:pmid/&rft_ieee_id=6800106&rfr_iscdi=true