A Metamodel for Estimating Error Bounds in Real-Time Traffic Prediction Systems
This paper presents a methodology for estimating the upper and lower bounds of a real-time traffic prediction system, i.e., its prediction interval. Without a very complex implementation work, our model is able to complement any preexisting prediction system with extra uncertainty information such a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2014-06, Vol.15 (3), p.1310-1322 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1322 |
---|---|
container_issue | 3 |
container_start_page | 1310 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 15 |
creator | Pereira, Francisco C. Antoniou, Constantinos Fargas, Joan Aguilar Ben-Akiva, Moshe |
description | This paper presents a methodology for estimating the upper and lower bounds of a real-time traffic prediction system, i.e., its prediction interval. Without a very complex implementation work, our model is able to complement any preexisting prediction system with extra uncertainty information such as the 5% and 95% quantiles. We treat the traffic prediction system as a black box that provides a feed of predictions. Having this feed together with observed values, we then train conditional quantile regression methods that estimate the upper and lower quantiles of the error. The goal of conditional quantile regression is to determine a function, i.e., d τ (x), that returns the specific quantile r of a target variable d, given an input vector x. Following Koenker, we implement two functional forms of d τ (x): locally weighted linear, which relies on value on the neighborhood of x, and splines, a piecewise defined smooth polynomial function. We demonstrate this methodology with three different traffic prediction models applied to two freeway data sets from Irvine, CA, and Tel Aviv, Israel. We contrast the results with a traditional confidence intervals approach that assumes that the error is normally distributed with constant (homoscedastic) variance. We apply several evaluation measures based on earlier literature and contribute two new measures that focus on relative interval length and balance between accuracy and interval length. For the available data set, we verified that conditional quantile regression outperforms the homoscedastic baseline in the vast majority of the indicators. |
doi_str_mv | 10.1109/TITS.2014.2300103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1546006864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6739140</ieee_id><sourcerecordid>3377849581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ed5e26b8406eec7129879dfe630fb242b0f9559d6e954c9952b5c1baf9fb1f523</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEEmPwARCXSJw77DTJluOYBkwaGmLlHPWPgzKt7Ui6w749rYY42X56z5Z_jN0jTBDBPGWrbDsRgHIiUgCE9IKNUKlZ0g_6cuiFTAwouGY3Me56VSrEEdvM-Tt1ed1WtOeuDXwZO1_nnW---TKEXnhuj00VuW_4J-X7JPM18SzkzvmSfwSqfNn5tuHbU-yojrfsyuX7SHd_dcy-XpbZ4i1Zb15Xi_k6KYVJu4QqRUIXMwmaqJyiMLOpqRzpFFwhpCjAGaVMpckoWRqjRKFKLHJnXIFOiXTMHs97D6H9OVLs7K49hqY_aVFJDaBnWvYuPLvK0MYYyNlD6L8LJ4tgB2524GYHbvaPW595OGc8Ef379TQ1KCH9BenpaIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546006864</pqid></control><display><type>article</type><title>A Metamodel for Estimating Error Bounds in Real-Time Traffic Prediction Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Pereira, Francisco C. ; Antoniou, Constantinos ; Fargas, Joan Aguilar ; Ben-Akiva, Moshe</creator><creatorcontrib>Pereira, Francisco C. ; Antoniou, Constantinos ; Fargas, Joan Aguilar ; Ben-Akiva, Moshe</creatorcontrib><description>This paper presents a methodology for estimating the upper and lower bounds of a real-time traffic prediction system, i.e., its prediction interval. Without a very complex implementation work, our model is able to complement any preexisting prediction system with extra uncertainty information such as the 5% and 95% quantiles. We treat the traffic prediction system as a black box that provides a feed of predictions. Having this feed together with observed values, we then train conditional quantile regression methods that estimate the upper and lower quantiles of the error. The goal of conditional quantile regression is to determine a function, i.e., d τ (x), that returns the specific quantile r of a target variable d, given an input vector x. Following Koenker, we implement two functional forms of d τ (x): locally weighted linear, which relies on value on the neighborhood of x, and splines, a piecewise defined smooth polynomial function. We demonstrate this methodology with three different traffic prediction models applied to two freeway data sets from Irvine, CA, and Tel Aviv, Israel. We contrast the results with a traditional confidence intervals approach that assumes that the error is normally distributed with constant (homoscedastic) variance. We apply several evaluation measures based on earlier literature and contribute two new measures that focus on relative interval length and balance between accuracy and interval length. For the available data set, we verified that conditional quantile regression outperforms the homoscedastic baseline in the vast majority of the indicators.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2014.2300103</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Confidence intervals ; Context ; Data models ; Dynamic traffic assignment (DTA) ; Economic models ; prediction intervals (PIs) ; Predictive models ; quantile regression ; Real-time systems ; Regression analysis ; Reliability ; Statistical analysis ; traffic prediction ; Uncertainty ; Vectors</subject><ispartof>IEEE transactions on intelligent transportation systems, 2014-06, Vol.15 (3), p.1310-1322</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ed5e26b8406eec7129879dfe630fb242b0f9559d6e954c9952b5c1baf9fb1f523</citedby><cites>FETCH-LOGICAL-c293t-ed5e26b8406eec7129879dfe630fb242b0f9559d6e954c9952b5c1baf9fb1f523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6739140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6739140$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pereira, Francisco C.</creatorcontrib><creatorcontrib>Antoniou, Constantinos</creatorcontrib><creatorcontrib>Fargas, Joan Aguilar</creatorcontrib><creatorcontrib>Ben-Akiva, Moshe</creatorcontrib><title>A Metamodel for Estimating Error Bounds in Real-Time Traffic Prediction Systems</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper presents a methodology for estimating the upper and lower bounds of a real-time traffic prediction system, i.e., its prediction interval. Without a very complex implementation work, our model is able to complement any preexisting prediction system with extra uncertainty information such as the 5% and 95% quantiles. We treat the traffic prediction system as a black box that provides a feed of predictions. Having this feed together with observed values, we then train conditional quantile regression methods that estimate the upper and lower quantiles of the error. The goal of conditional quantile regression is to determine a function, i.e., d τ (x), that returns the specific quantile r of a target variable d, given an input vector x. Following Koenker, we implement two functional forms of d τ (x): locally weighted linear, which relies on value on the neighborhood of x, and splines, a piecewise defined smooth polynomial function. We demonstrate this methodology with three different traffic prediction models applied to two freeway data sets from Irvine, CA, and Tel Aviv, Israel. We contrast the results with a traditional confidence intervals approach that assumes that the error is normally distributed with constant (homoscedastic) variance. We apply several evaluation measures based on earlier literature and contribute two new measures that focus on relative interval length and balance between accuracy and interval length. For the available data set, we verified that conditional quantile regression outperforms the homoscedastic baseline in the vast majority of the indicators.</description><subject>Algorithms</subject><subject>Confidence intervals</subject><subject>Context</subject><subject>Data models</subject><subject>Dynamic traffic assignment (DTA)</subject><subject>Economic models</subject><subject>prediction intervals (PIs)</subject><subject>Predictive models</subject><subject>quantile regression</subject><subject>Real-time systems</subject><subject>Regression analysis</subject><subject>Reliability</subject><subject>Statistical analysis</subject><subject>traffic prediction</subject><subject>Uncertainty</subject><subject>Vectors</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwzAMxSMEEmPwARCXSJw77DTJluOYBkwaGmLlHPWPgzKt7Ui6w749rYY42X56z5Z_jN0jTBDBPGWrbDsRgHIiUgCE9IKNUKlZ0g_6cuiFTAwouGY3Me56VSrEEdvM-Tt1ed1WtOeuDXwZO1_nnW---TKEXnhuj00VuW_4J-X7JPM18SzkzvmSfwSqfNn5tuHbU-yojrfsyuX7SHd_dcy-XpbZ4i1Zb15Xi_k6KYVJu4QqRUIXMwmaqJyiMLOpqRzpFFwhpCjAGaVMpckoWRqjRKFKLHJnXIFOiXTMHs97D6H9OVLs7K49hqY_aVFJDaBnWvYuPLvK0MYYyNlD6L8LJ4tgB2524GYHbvaPW595OGc8Ef379TQ1KCH9BenpaIo</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Pereira, Francisco C.</creator><creator>Antoniou, Constantinos</creator><creator>Fargas, Joan Aguilar</creator><creator>Ben-Akiva, Moshe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>A Metamodel for Estimating Error Bounds in Real-Time Traffic Prediction Systems</title><author>Pereira, Francisco C. ; Antoniou, Constantinos ; Fargas, Joan Aguilar ; Ben-Akiva, Moshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ed5e26b8406eec7129879dfe630fb242b0f9559d6e954c9952b5c1baf9fb1f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Confidence intervals</topic><topic>Context</topic><topic>Data models</topic><topic>Dynamic traffic assignment (DTA)</topic><topic>Economic models</topic><topic>prediction intervals (PIs)</topic><topic>Predictive models</topic><topic>quantile regression</topic><topic>Real-time systems</topic><topic>Regression analysis</topic><topic>Reliability</topic><topic>Statistical analysis</topic><topic>traffic prediction</topic><topic>Uncertainty</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, Francisco C.</creatorcontrib><creatorcontrib>Antoniou, Constantinos</creatorcontrib><creatorcontrib>Fargas, Joan Aguilar</creatorcontrib><creatorcontrib>Ben-Akiva, Moshe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pereira, Francisco C.</au><au>Antoniou, Constantinos</au><au>Fargas, Joan Aguilar</au><au>Ben-Akiva, Moshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Metamodel for Estimating Error Bounds in Real-Time Traffic Prediction Systems</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>15</volume><issue>3</issue><spage>1310</spage><epage>1322</epage><pages>1310-1322</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper presents a methodology for estimating the upper and lower bounds of a real-time traffic prediction system, i.e., its prediction interval. Without a very complex implementation work, our model is able to complement any preexisting prediction system with extra uncertainty information such as the 5% and 95% quantiles. We treat the traffic prediction system as a black box that provides a feed of predictions. Having this feed together with observed values, we then train conditional quantile regression methods that estimate the upper and lower quantiles of the error. The goal of conditional quantile regression is to determine a function, i.e., d τ (x), that returns the specific quantile r of a target variable d, given an input vector x. Following Koenker, we implement two functional forms of d τ (x): locally weighted linear, which relies on value on the neighborhood of x, and splines, a piecewise defined smooth polynomial function. We demonstrate this methodology with three different traffic prediction models applied to two freeway data sets from Irvine, CA, and Tel Aviv, Israel. We contrast the results with a traditional confidence intervals approach that assumes that the error is normally distributed with constant (homoscedastic) variance. We apply several evaluation measures based on earlier literature and contribute two new measures that focus on relative interval length and balance between accuracy and interval length. For the available data set, we verified that conditional quantile regression outperforms the homoscedastic baseline in the vast majority of the indicators.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2014.2300103</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2014-06, Vol.15 (3), p.1310-1322 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_1546006864 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Confidence intervals Context Data models Dynamic traffic assignment (DTA) Economic models prediction intervals (PIs) Predictive models quantile regression Real-time systems Regression analysis Reliability Statistical analysis traffic prediction Uncertainty Vectors |
title | A Metamodel for Estimating Error Bounds in Real-Time Traffic Prediction Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Metamodel%20for%20Estimating%20Error%20Bounds%20in%20Real-Time%20Traffic%20Prediction%20Systems&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Pereira,%20Francisco%20C.&rft.date=2014-06-01&rft.volume=15&rft.issue=3&rft.spage=1310&rft.epage=1322&rft.pages=1310-1322&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2014.2300103&rft_dat=%3Cproquest_RIE%3E3377849581%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546006864&rft_id=info:pmid/&rft_ieee_id=6739140&rfr_iscdi=true |