Case Study: An Adaptive Underfrequency Load-Shedding System
Underfrequency (UF) schemes are implemented in nearly every power system and are deemed critical methods to avert system-wide blackouts. Unfortunately, UF-based schemes are often ineffective for industrial power systems. Traditional UF schemes are implemented in either discrete electromechanical rel...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2014-05, Vol.50 (3), p.1659-1667 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1667 |
---|---|
container_issue | 3 |
container_start_page | 1659 |
container_title | IEEE transactions on industry applications |
container_volume | 50 |
creator | Manson, Scott Zweigle, Greg Yedidi, Vinod |
description | Underfrequency (UF) schemes are implemented in nearly every power system and are deemed critical methods to avert system-wide blackouts. Unfortunately, UF-based schemes are often ineffective for industrial power systems. Traditional UF schemes are implemented in either discrete electromechanical relays or microprocessor-based multifunction relays. Individual loads or feeders are most commonly shed by relays working autonomously. The UF in each relay is set in a staggered fashion, using different timers and UF thresholds. Sometimes, dω/dt elements are used to select larger blocks of load to shed. Unfortunately, no traditional schemes take into account load-level changes, system inertia changes, changes in load composition, governor response characteristics, or changes in system topology. This paper explains an adaptive method that overcomes known UF scheme problems by using communication between remote protective relays and a centralized UF appliance. This method continuously keeps track of dynamically changing load levels, system topology, and load composition. The theory behind the improved scheme is explained using modeling results from a real power system. |
doi_str_mv | 10.1109/TIA.2013.2288432 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1545973795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6654288</ieee_id><sourcerecordid>1559694406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-74937854282395330d7b5946a2f2253d20ba8661d325a367585cae76ab33c8093</originalsourceid><addsrcrecordid>eNpdkD1PwzAQQC0EEqWwI7FEYmFJsX3-hCmq-KhUiaHtbLmxA6napNgJUv49rloxMN3y7vTuIXRL8IQQrB-Xs2JCMYEJpUoxoGdoRDToXIOQ52iEsYZca80u0VWMG4wJ44SN0PPURp8tut4NT1nRZIWz-67-8dmqcT5UwX_3vimHbN5aly--vHN185kthtj53TW6qOw2-pvTHKPV68ty-p7PP95m02Kel0BZl0umQSrOqKKgOQB2cs01E5ZWlHJwFK-tEoI4oNwmW654ab0Udg1QquQ9Rg_Hu_vQJp3YmV0dS7_d2sa3fTSEcy00Y1gk9P4fumn70CS7RDGuJcikMEb4SJWhjTH4yuxDvbNhMASbQ02TappDTXOqmVbujiu19_4PF-LwloJfUlpsow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545973795</pqid></control><display><type>article</type><title>Case Study: An Adaptive Underfrequency Load-Shedding System</title><source>IEEE Electronic Library (IEL)</source><creator>Manson, Scott ; Zweigle, Greg ; Yedidi, Vinod</creator><creatorcontrib>Manson, Scott ; Zweigle, Greg ; Yedidi, Vinod</creatorcontrib><description>Underfrequency (UF) schemes are implemented in nearly every power system and are deemed critical methods to avert system-wide blackouts. Unfortunately, UF-based schemes are often ineffective for industrial power systems. Traditional UF schemes are implemented in either discrete electromechanical relays or microprocessor-based multifunction relays. Individual loads or feeders are most commonly shed by relays working autonomously. The UF in each relay is set in a staggered fashion, using different timers and UF thresholds. Sometimes, dω/dt elements are used to select larger blocks of load to shed. Unfortunately, no traditional schemes take into account load-level changes, system inertia changes, changes in load composition, governor response characteristics, or changes in system topology. This paper explains an adaptive method that overcomes known UF scheme problems by using communication between remote protective relays and a centralized UF appliance. This method continuously keeps track of dynamically changing load levels, system topology, and load composition. The theory behind the improved scheme is explained using modeling results from a real power system.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2013.2288432</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Blackout ; dynamic stability ; Dynamical systems ; Dynamics ; Electric relays ; generation shedding ; Generators ; ICLT ; incremental reserve margin ; Inertia ; Load ; load shedding ; Power system dynamics ; Power system stability ; Relays ; Reliability ; Sheds ; spinning reserve ; Timing devices ; Topology ; Turbines</subject><ispartof>IEEE transactions on industry applications, 2014-05, Vol.50 (3), p.1659-1667</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-74937854282395330d7b5946a2f2253d20ba8661d325a367585cae76ab33c8093</citedby><cites>FETCH-LOGICAL-c324t-74937854282395330d7b5946a2f2253d20ba8661d325a367585cae76ab33c8093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6654288$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6654288$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manson, Scott</creatorcontrib><creatorcontrib>Zweigle, Greg</creatorcontrib><creatorcontrib>Yedidi, Vinod</creatorcontrib><title>Case Study: An Adaptive Underfrequency Load-Shedding System</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Underfrequency (UF) schemes are implemented in nearly every power system and are deemed critical methods to avert system-wide blackouts. Unfortunately, UF-based schemes are often ineffective for industrial power systems. Traditional UF schemes are implemented in either discrete electromechanical relays or microprocessor-based multifunction relays. Individual loads or feeders are most commonly shed by relays working autonomously. The UF in each relay is set in a staggered fashion, using different timers and UF thresholds. Sometimes, dω/dt elements are used to select larger blocks of load to shed. Unfortunately, no traditional schemes take into account load-level changes, system inertia changes, changes in load composition, governor response characteristics, or changes in system topology. This paper explains an adaptive method that overcomes known UF scheme problems by using communication between remote protective relays and a centralized UF appliance. This method continuously keeps track of dynamically changing load levels, system topology, and load composition. The theory behind the improved scheme is explained using modeling results from a real power system.</description><subject>Blackout</subject><subject>dynamic stability</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electric relays</subject><subject>generation shedding</subject><subject>Generators</subject><subject>ICLT</subject><subject>incremental reserve margin</subject><subject>Inertia</subject><subject>Load</subject><subject>load shedding</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Relays</subject><subject>Reliability</subject><subject>Sheds</subject><subject>spinning reserve</subject><subject>Timing devices</subject><subject>Topology</subject><subject>Turbines</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQQC0EEqWwI7FEYmFJsX3-hCmq-KhUiaHtbLmxA6napNgJUv49rloxMN3y7vTuIXRL8IQQrB-Xs2JCMYEJpUoxoGdoRDToXIOQ52iEsYZca80u0VWMG4wJ44SN0PPURp8tut4NT1nRZIWz-67-8dmqcT5UwX_3vimHbN5aly--vHN185kthtj53TW6qOw2-pvTHKPV68ty-p7PP95m02Kel0BZl0umQSrOqKKgOQB2cs01E5ZWlHJwFK-tEoI4oNwmW654ab0Udg1QquQ9Rg_Hu_vQJp3YmV0dS7_d2sa3fTSEcy00Y1gk9P4fumn70CS7RDGuJcikMEb4SJWhjTH4yuxDvbNhMASbQ02TappDTXOqmVbujiu19_4PF-LwloJfUlpsow</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Manson, Scott</creator><creator>Zweigle, Greg</creator><creator>Yedidi, Vinod</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140501</creationdate><title>Case Study: An Adaptive Underfrequency Load-Shedding System</title><author>Manson, Scott ; Zweigle, Greg ; Yedidi, Vinod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-74937854282395330d7b5946a2f2253d20ba8661d325a367585cae76ab33c8093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Blackout</topic><topic>dynamic stability</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electric relays</topic><topic>generation shedding</topic><topic>Generators</topic><topic>ICLT</topic><topic>incremental reserve margin</topic><topic>Inertia</topic><topic>Load</topic><topic>load shedding</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Relays</topic><topic>Reliability</topic><topic>Sheds</topic><topic>spinning reserve</topic><topic>Timing devices</topic><topic>Topology</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manson, Scott</creatorcontrib><creatorcontrib>Zweigle, Greg</creatorcontrib><creatorcontrib>Yedidi, Vinod</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manson, Scott</au><au>Zweigle, Greg</au><au>Yedidi, Vinod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Case Study: An Adaptive Underfrequency Load-Shedding System</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>50</volume><issue>3</issue><spage>1659</spage><epage>1667</epage><pages>1659-1667</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Underfrequency (UF) schemes are implemented in nearly every power system and are deemed critical methods to avert system-wide blackouts. Unfortunately, UF-based schemes are often ineffective for industrial power systems. Traditional UF schemes are implemented in either discrete electromechanical relays or microprocessor-based multifunction relays. Individual loads or feeders are most commonly shed by relays working autonomously. The UF in each relay is set in a staggered fashion, using different timers and UF thresholds. Sometimes, dω/dt elements are used to select larger blocks of load to shed. Unfortunately, no traditional schemes take into account load-level changes, system inertia changes, changes in load composition, governor response characteristics, or changes in system topology. This paper explains an adaptive method that overcomes known UF scheme problems by using communication between remote protective relays and a centralized UF appliance. This method continuously keeps track of dynamically changing load levels, system topology, and load composition. The theory behind the improved scheme is explained using modeling results from a real power system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2013.2288432</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2014-05, Vol.50 (3), p.1659-1667 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_proquest_journals_1545973795 |
source | IEEE Electronic Library (IEL) |
subjects | Blackout dynamic stability Dynamical systems Dynamics Electric relays generation shedding Generators ICLT incremental reserve margin Inertia Load load shedding Power system dynamics Power system stability Relays Reliability Sheds spinning reserve Timing devices Topology Turbines |
title | Case Study: An Adaptive Underfrequency Load-Shedding System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Case%20Study:%20An%20Adaptive%20Underfrequency%20Load-Shedding%20System&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Manson,%20Scott&rft.date=2014-05-01&rft.volume=50&rft.issue=3&rft.spage=1659&rft.epage=1667&rft.pages=1659-1667&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2013.2288432&rft_dat=%3Cproquest_RIE%3E1559694406%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545973795&rft_id=info:pmid/&rft_ieee_id=6654288&rfr_iscdi=true |