Case Study: An Adaptive Underfrequency Load-Shedding System

Underfrequency (UF) schemes are implemented in nearly every power system and are deemed critical methods to avert system-wide blackouts. Unfortunately, UF-based schemes are often ineffective for industrial power systems. Traditional UF schemes are implemented in either discrete electromechanical rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2014-05, Vol.50 (3), p.1659-1667
Hauptverfasser: Manson, Scott, Zweigle, Greg, Yedidi, Vinod
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1667
container_issue 3
container_start_page 1659
container_title IEEE transactions on industry applications
container_volume 50
creator Manson, Scott
Zweigle, Greg
Yedidi, Vinod
description Underfrequency (UF) schemes are implemented in nearly every power system and are deemed critical methods to avert system-wide blackouts. Unfortunately, UF-based schemes are often ineffective for industrial power systems. Traditional UF schemes are implemented in either discrete electromechanical relays or microprocessor-based multifunction relays. Individual loads or feeders are most commonly shed by relays working autonomously. The UF in each relay is set in a staggered fashion, using different timers and UF thresholds. Sometimes, dω/dt elements are used to select larger blocks of load to shed. Unfortunately, no traditional schemes take into account load-level changes, system inertia changes, changes in load composition, governor response characteristics, or changes in system topology. This paper explains an adaptive method that overcomes known UF scheme problems by using communication between remote protective relays and a centralized UF appliance. This method continuously keeps track of dynamically changing load levels, system topology, and load composition. The theory behind the improved scheme is explained using modeling results from a real power system.
doi_str_mv 10.1109/TIA.2013.2288432
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1545973795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6654288</ieee_id><sourcerecordid>1559694406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-74937854282395330d7b5946a2f2253d20ba8661d325a367585cae76ab33c8093</originalsourceid><addsrcrecordid>eNpdkD1PwzAQQC0EEqWwI7FEYmFJsX3-hCmq-KhUiaHtbLmxA6napNgJUv49rloxMN3y7vTuIXRL8IQQrB-Xs2JCMYEJpUoxoGdoRDToXIOQ52iEsYZca80u0VWMG4wJ44SN0PPURp8tut4NT1nRZIWz-67-8dmqcT5UwX_3vimHbN5aly--vHN185kthtj53TW6qOw2-pvTHKPV68ty-p7PP95m02Kel0BZl0umQSrOqKKgOQB2cs01E5ZWlHJwFK-tEoI4oNwmW654ab0Udg1QquQ9Rg_Hu_vQJp3YmV0dS7_d2sa3fTSEcy00Y1gk9P4fumn70CS7RDGuJcikMEb4SJWhjTH4yuxDvbNhMASbQ02TappDTXOqmVbujiu19_4PF-LwloJfUlpsow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545973795</pqid></control><display><type>article</type><title>Case Study: An Adaptive Underfrequency Load-Shedding System</title><source>IEEE Electronic Library (IEL)</source><creator>Manson, Scott ; Zweigle, Greg ; Yedidi, Vinod</creator><creatorcontrib>Manson, Scott ; Zweigle, Greg ; Yedidi, Vinod</creatorcontrib><description>Underfrequency (UF) schemes are implemented in nearly every power system and are deemed critical methods to avert system-wide blackouts. Unfortunately, UF-based schemes are often ineffective for industrial power systems. Traditional UF schemes are implemented in either discrete electromechanical relays or microprocessor-based multifunction relays. Individual loads or feeders are most commonly shed by relays working autonomously. The UF in each relay is set in a staggered fashion, using different timers and UF thresholds. Sometimes, dω/dt elements are used to select larger blocks of load to shed. Unfortunately, no traditional schemes take into account load-level changes, system inertia changes, changes in load composition, governor response characteristics, or changes in system topology. This paper explains an adaptive method that overcomes known UF scheme problems by using communication between remote protective relays and a centralized UF appliance. This method continuously keeps track of dynamically changing load levels, system topology, and load composition. The theory behind the improved scheme is explained using modeling results from a real power system.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2013.2288432</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Blackout ; dynamic stability ; Dynamical systems ; Dynamics ; Electric relays ; generation shedding ; Generators ; ICLT ; incremental reserve margin ; Inertia ; Load ; load shedding ; Power system dynamics ; Power system stability ; Relays ; Reliability ; Sheds ; spinning reserve ; Timing devices ; Topology ; Turbines</subject><ispartof>IEEE transactions on industry applications, 2014-05, Vol.50 (3), p.1659-1667</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-74937854282395330d7b5946a2f2253d20ba8661d325a367585cae76ab33c8093</citedby><cites>FETCH-LOGICAL-c324t-74937854282395330d7b5946a2f2253d20ba8661d325a367585cae76ab33c8093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6654288$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6654288$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manson, Scott</creatorcontrib><creatorcontrib>Zweigle, Greg</creatorcontrib><creatorcontrib>Yedidi, Vinod</creatorcontrib><title>Case Study: An Adaptive Underfrequency Load-Shedding System</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Underfrequency (UF) schemes are implemented in nearly every power system and are deemed critical methods to avert system-wide blackouts. Unfortunately, UF-based schemes are often ineffective for industrial power systems. Traditional UF schemes are implemented in either discrete electromechanical relays or microprocessor-based multifunction relays. Individual loads or feeders are most commonly shed by relays working autonomously. The UF in each relay is set in a staggered fashion, using different timers and UF thresholds. Sometimes, dω/dt elements are used to select larger blocks of load to shed. Unfortunately, no traditional schemes take into account load-level changes, system inertia changes, changes in load composition, governor response characteristics, or changes in system topology. This paper explains an adaptive method that overcomes known UF scheme problems by using communication between remote protective relays and a centralized UF appliance. This method continuously keeps track of dynamically changing load levels, system topology, and load composition. The theory behind the improved scheme is explained using modeling results from a real power system.</description><subject>Blackout</subject><subject>dynamic stability</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electric relays</subject><subject>generation shedding</subject><subject>Generators</subject><subject>ICLT</subject><subject>incremental reserve margin</subject><subject>Inertia</subject><subject>Load</subject><subject>load shedding</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Relays</subject><subject>Reliability</subject><subject>Sheds</subject><subject>spinning reserve</subject><subject>Timing devices</subject><subject>Topology</subject><subject>Turbines</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQQC0EEqWwI7FEYmFJsX3-hCmq-KhUiaHtbLmxA6napNgJUv49rloxMN3y7vTuIXRL8IQQrB-Xs2JCMYEJpUoxoGdoRDToXIOQ52iEsYZca80u0VWMG4wJ44SN0PPURp8tut4NT1nRZIWz-67-8dmqcT5UwX_3vimHbN5aly--vHN185kthtj53TW6qOw2-pvTHKPV68ty-p7PP95m02Kel0BZl0umQSrOqKKgOQB2cs01E5ZWlHJwFK-tEoI4oNwmW654ab0Udg1QquQ9Rg_Hu_vQJp3YmV0dS7_d2sa3fTSEcy00Y1gk9P4fumn70CS7RDGuJcikMEb4SJWhjTH4yuxDvbNhMASbQ02TappDTXOqmVbujiu19_4PF-LwloJfUlpsow</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Manson, Scott</creator><creator>Zweigle, Greg</creator><creator>Yedidi, Vinod</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140501</creationdate><title>Case Study: An Adaptive Underfrequency Load-Shedding System</title><author>Manson, Scott ; Zweigle, Greg ; Yedidi, Vinod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-74937854282395330d7b5946a2f2253d20ba8661d325a367585cae76ab33c8093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Blackout</topic><topic>dynamic stability</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electric relays</topic><topic>generation shedding</topic><topic>Generators</topic><topic>ICLT</topic><topic>incremental reserve margin</topic><topic>Inertia</topic><topic>Load</topic><topic>load shedding</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Relays</topic><topic>Reliability</topic><topic>Sheds</topic><topic>spinning reserve</topic><topic>Timing devices</topic><topic>Topology</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manson, Scott</creatorcontrib><creatorcontrib>Zweigle, Greg</creatorcontrib><creatorcontrib>Yedidi, Vinod</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manson, Scott</au><au>Zweigle, Greg</au><au>Yedidi, Vinod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Case Study: An Adaptive Underfrequency Load-Shedding System</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>50</volume><issue>3</issue><spage>1659</spage><epage>1667</epage><pages>1659-1667</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Underfrequency (UF) schemes are implemented in nearly every power system and are deemed critical methods to avert system-wide blackouts. Unfortunately, UF-based schemes are often ineffective for industrial power systems. Traditional UF schemes are implemented in either discrete electromechanical relays or microprocessor-based multifunction relays. Individual loads or feeders are most commonly shed by relays working autonomously. The UF in each relay is set in a staggered fashion, using different timers and UF thresholds. Sometimes, dω/dt elements are used to select larger blocks of load to shed. Unfortunately, no traditional schemes take into account load-level changes, system inertia changes, changes in load composition, governor response characteristics, or changes in system topology. This paper explains an adaptive method that overcomes known UF scheme problems by using communication between remote protective relays and a centralized UF appliance. This method continuously keeps track of dynamically changing load levels, system topology, and load composition. The theory behind the improved scheme is explained using modeling results from a real power system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2013.2288432</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2014-05, Vol.50 (3), p.1659-1667
issn 0093-9994
1939-9367
language eng
recordid cdi_proquest_journals_1545973795
source IEEE Electronic Library (IEL)
subjects Blackout
dynamic stability
Dynamical systems
Dynamics
Electric relays
generation shedding
Generators
ICLT
incremental reserve margin
Inertia
Load
load shedding
Power system dynamics
Power system stability
Relays
Reliability
Sheds
spinning reserve
Timing devices
Topology
Turbines
title Case Study: An Adaptive Underfrequency Load-Shedding System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Case%20Study:%20An%20Adaptive%20Underfrequency%20Load-Shedding%20System&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Manson,%20Scott&rft.date=2014-05-01&rft.volume=50&rft.issue=3&rft.spage=1659&rft.epage=1667&rft.pages=1659-1667&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2013.2288432&rft_dat=%3Cproquest_RIE%3E1559694406%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545973795&rft_id=info:pmid/&rft_ieee_id=6654288&rfr_iscdi=true