A Novel 16-Channel Wireless System for Electroencephalography Measurements With Dry Spring-Loaded Sensors
Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors ma...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2014-06, Vol.63 (6), p.1545-1555 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1555 |
---|---|
container_issue | 6 |
container_start_page | 1545 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 63 |
creator | Liao, Lun-De Wu, Shang-Lin Liou, Chang-Hong Lu, Shao-Wei Chen, Shi-An Chen, Sheng-Fu Ko, Li-Wei Lin, Chin-Teng |
description | Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors make them uncomfortable and inconvenient for users. To overcome the limitations of conventional EEG measurement systems, a wireless and wearable multichannel EEG measurement system is proposed in this paper. This system includes a wireless data acquisition device, dry spring-loaded sensors, and a size-adjustable soft cap. We compared the performance of the proposed system using dry versus conventional wet sensors. A significant positive correlation between readings from wet and dry sensors was achieved, thus demonstrating the performance of the system. Moreover, four different features of EEG signals (i.e., normal, eye-blinking, closed-eyes, and teeth-clenching signals) were measured by 16 dry sensors to ensure that they could be detected in real-life cognitive neuroscience applications. Thus, we have shown that it is possible to reliably measure EEG signals using the proposed system. This paper presents novel insights into the field of cognitive neuroscience, showing the possibility of studying brain function under real-life conditions. |
doi_str_mv | 10.1109/TIM.2013.2293222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1545956949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6704315</ieee_id><sourcerecordid>1620064361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-c3b3546998c6b7d4fb8a9caca3e229535190ad935ee3b8edb9bbb23baaf7dd1b3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqWwI7FYYmFJ8XfiEZXyIRUYWsRo2c6FBqVxsVOk_nuMihiY7obnPd37IHROyYRSoq-Xj08TRiifMKY5Y-wAjaiUZaGVYodoRAitCi2kOkYnKX0QQkolyhFqb_Bz-IIOU1VMV7bv8_rWRuggJbzYpQHWuAkRzzrwQwzQe9isbBfeo92sdvgJbNpGWEM_pJwbVvg27vBiE9v-vZgHW0ONF9CnENMpOmpsl-Dsd47R691sOX0o5i_3j9ObeeFFxYfCc8elUFpXXrmyFo2rrPbWWw65meSSamJrzSUAdxXUTjvnGHfWNmVdU8fH6Gp_dxPD5xbSYNZt8tB1toewTYYqRogSXNGMXv5DP8I29vk7Q6WQWiotdKbInvIxpBShMbne2sadocT8uDfZvflxb37d58jFPtICwB-uSiI4lfwbF4mAyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545956949</pqid></control><display><type>article</type><title>A Novel 16-Channel Wireless System for Electroencephalography Measurements With Dry Spring-Loaded Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Lun-De ; Wu, Shang-Lin ; Liou, Chang-Hong ; Lu, Shao-Wei ; Chen, Shi-An ; Chen, Sheng-Fu ; Ko, Li-Wei ; Lin, Chin-Teng</creator><creatorcontrib>Liao, Lun-De ; Wu, Shang-Lin ; Liou, Chang-Hong ; Lu, Shao-Wei ; Chen, Shi-An ; Chen, Sheng-Fu ; Ko, Li-Wei ; Lin, Chin-Teng</creatorcontrib><description>Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors make them uncomfortable and inconvenient for users. To overcome the limitations of conventional EEG measurement systems, a wireless and wearable multichannel EEG measurement system is proposed in this paper. This system includes a wireless data acquisition device, dry spring-loaded sensors, and a size-adjustable soft cap. We compared the performance of the proposed system using dry versus conventional wet sensors. A significant positive correlation between readings from wet and dry sensors was achieved, thus demonstrating the performance of the system. Moreover, four different features of EEG signals (i.e., normal, eye-blinking, closed-eyes, and teeth-clenching signals) were measured by 16 dry sensors to ensure that they could be detected in real-life cognitive neuroscience applications. Thus, we have shown that it is possible to reliably measure EEG signals using the proposed system. This paper presents novel insights into the field of cognitive neuroscience, showing the possibility of studying brain function under real-life conditions.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2013.2293222</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alzheimer's disease ; Brain ; Diseases ; Dry sensor ; Drying ; Electroencephalography ; electroencephalography (EEG) ; electroencephalography measurement system ; Instrumentation ; Nervous system ; Neurosciences ; Probes ; Scalp ; Sensor systems ; Sensors ; size-adjustable soft cap ; Wireless communication ; wireless data acquisition device ; Wireless sensor networks</subject><ispartof>IEEE transactions on instrumentation and measurement, 2014-06, Vol.63 (6), p.1545-1555</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-c3b3546998c6b7d4fb8a9caca3e229535190ad935ee3b8edb9bbb23baaf7dd1b3</citedby><cites>FETCH-LOGICAL-c483t-c3b3546998c6b7d4fb8a9caca3e229535190ad935ee3b8edb9bbb23baaf7dd1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6704315$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6704315$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Lun-De</creatorcontrib><creatorcontrib>Wu, Shang-Lin</creatorcontrib><creatorcontrib>Liou, Chang-Hong</creatorcontrib><creatorcontrib>Lu, Shao-Wei</creatorcontrib><creatorcontrib>Chen, Shi-An</creatorcontrib><creatorcontrib>Chen, Sheng-Fu</creatorcontrib><creatorcontrib>Ko, Li-Wei</creatorcontrib><creatorcontrib>Lin, Chin-Teng</creatorcontrib><title>A Novel 16-Channel Wireless System for Electroencephalography Measurements With Dry Spring-Loaded Sensors</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors make them uncomfortable and inconvenient for users. To overcome the limitations of conventional EEG measurement systems, a wireless and wearable multichannel EEG measurement system is proposed in this paper. This system includes a wireless data acquisition device, dry spring-loaded sensors, and a size-adjustable soft cap. We compared the performance of the proposed system using dry versus conventional wet sensors. A significant positive correlation between readings from wet and dry sensors was achieved, thus demonstrating the performance of the system. Moreover, four different features of EEG signals (i.e., normal, eye-blinking, closed-eyes, and teeth-clenching signals) were measured by 16 dry sensors to ensure that they could be detected in real-life cognitive neuroscience applications. Thus, we have shown that it is possible to reliably measure EEG signals using the proposed system. This paper presents novel insights into the field of cognitive neuroscience, showing the possibility of studying brain function under real-life conditions.</description><subject>Alzheimer's disease</subject><subject>Brain</subject><subject>Diseases</subject><subject>Dry sensor</subject><subject>Drying</subject><subject>Electroencephalography</subject><subject>electroencephalography (EEG)</subject><subject>electroencephalography measurement system</subject><subject>Instrumentation</subject><subject>Nervous system</subject><subject>Neurosciences</subject><subject>Probes</subject><subject>Scalp</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>size-adjustable soft cap</subject><subject>Wireless communication</subject><subject>wireless data acquisition device</subject><subject>Wireless sensor networks</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqWwI7FYYmFJ8XfiEZXyIRUYWsRo2c6FBqVxsVOk_nuMihiY7obnPd37IHROyYRSoq-Xj08TRiifMKY5Y-wAjaiUZaGVYodoRAitCi2kOkYnKX0QQkolyhFqb_Bz-IIOU1VMV7bv8_rWRuggJbzYpQHWuAkRzzrwQwzQe9isbBfeo92sdvgJbNpGWEM_pJwbVvg27vBiE9v-vZgHW0ONF9CnENMpOmpsl-Dsd47R691sOX0o5i_3j9ObeeFFxYfCc8elUFpXXrmyFo2rrPbWWw65meSSamJrzSUAdxXUTjvnGHfWNmVdU8fH6Gp_dxPD5xbSYNZt8tB1toewTYYqRogSXNGMXv5DP8I29vk7Q6WQWiotdKbInvIxpBShMbne2sadocT8uDfZvflxb37d58jFPtICwB-uSiI4lfwbF4mAyw</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Liao, Lun-De</creator><creator>Wu, Shang-Lin</creator><creator>Liou, Chang-Hong</creator><creator>Lu, Shao-Wei</creator><creator>Chen, Shi-An</creator><creator>Chen, Sheng-Fu</creator><creator>Ko, Li-Wei</creator><creator>Lin, Chin-Teng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140601</creationdate><title>A Novel 16-Channel Wireless System for Electroencephalography Measurements With Dry Spring-Loaded Sensors</title><author>Liao, Lun-De ; Wu, Shang-Lin ; Liou, Chang-Hong ; Lu, Shao-Wei ; Chen, Shi-An ; Chen, Sheng-Fu ; Ko, Li-Wei ; Lin, Chin-Teng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-c3b3546998c6b7d4fb8a9caca3e229535190ad935ee3b8edb9bbb23baaf7dd1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alzheimer's disease</topic><topic>Brain</topic><topic>Diseases</topic><topic>Dry sensor</topic><topic>Drying</topic><topic>Electroencephalography</topic><topic>electroencephalography (EEG)</topic><topic>electroencephalography measurement system</topic><topic>Instrumentation</topic><topic>Nervous system</topic><topic>Neurosciences</topic><topic>Probes</topic><topic>Scalp</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>size-adjustable soft cap</topic><topic>Wireless communication</topic><topic>wireless data acquisition device</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Lun-De</creatorcontrib><creatorcontrib>Wu, Shang-Lin</creatorcontrib><creatorcontrib>Liou, Chang-Hong</creatorcontrib><creatorcontrib>Lu, Shao-Wei</creatorcontrib><creatorcontrib>Chen, Shi-An</creatorcontrib><creatorcontrib>Chen, Sheng-Fu</creatorcontrib><creatorcontrib>Ko, Li-Wei</creatorcontrib><creatorcontrib>Lin, Chin-Teng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Lun-De</au><au>Wu, Shang-Lin</au><au>Liou, Chang-Hong</au><au>Lu, Shao-Wei</au><au>Chen, Shi-An</au><au>Chen, Sheng-Fu</au><au>Ko, Li-Wei</au><au>Lin, Chin-Teng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel 16-Channel Wireless System for Electroencephalography Measurements With Dry Spring-Loaded Sensors</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>63</volume><issue>6</issue><spage>1545</spage><epage>1555</epage><pages>1545-1555</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors make them uncomfortable and inconvenient for users. To overcome the limitations of conventional EEG measurement systems, a wireless and wearable multichannel EEG measurement system is proposed in this paper. This system includes a wireless data acquisition device, dry spring-loaded sensors, and a size-adjustable soft cap. We compared the performance of the proposed system using dry versus conventional wet sensors. A significant positive correlation between readings from wet and dry sensors was achieved, thus demonstrating the performance of the system. Moreover, four different features of EEG signals (i.e., normal, eye-blinking, closed-eyes, and teeth-clenching signals) were measured by 16 dry sensors to ensure that they could be detected in real-life cognitive neuroscience applications. Thus, we have shown that it is possible to reliably measure EEG signals using the proposed system. This paper presents novel insights into the field of cognitive neuroscience, showing the possibility of studying brain function under real-life conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2013.2293222</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2014-06, Vol.63 (6), p.1545-1555 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_1545956949 |
source | IEEE Electronic Library (IEL) |
subjects | Alzheimer's disease Brain Diseases Dry sensor Drying Electroencephalography electroencephalography (EEG) electroencephalography measurement system Instrumentation Nervous system Neurosciences Probes Scalp Sensor systems Sensors size-adjustable soft cap Wireless communication wireless data acquisition device Wireless sensor networks |
title | A Novel 16-Channel Wireless System for Electroencephalography Measurements With Dry Spring-Loaded Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%2016-Channel%20Wireless%20System%20for%20Electroencephalography%20Measurements%20With%20Dry%20Spring-Loaded%20Sensors&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Liao,%20Lun-De&rft.date=2014-06-01&rft.volume=63&rft.issue=6&rft.spage=1545&rft.epage=1555&rft.pages=1545-1555&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2013.2293222&rft_dat=%3Cproquest_RIE%3E1620064361%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545956949&rft_id=info:pmid/&rft_ieee_id=6704315&rfr_iscdi=true |