A Novel 16-Channel Wireless System for Electroencephalography Measurements With Dry Spring-Loaded Sensors

Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2014-06, Vol.63 (6), p.1545-1555
Hauptverfasser: Liao, Lun-De, Wu, Shang-Lin, Liou, Chang-Hong, Lu, Shao-Wei, Chen, Shi-An, Chen, Sheng-Fu, Ko, Li-Wei, Lin, Chin-Teng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1555
container_issue 6
container_start_page 1545
container_title IEEE transactions on instrumentation and measurement
container_volume 63
creator Liao, Lun-De
Wu, Shang-Lin
Liou, Chang-Hong
Lu, Shao-Wei
Chen, Shi-An
Chen, Sheng-Fu
Ko, Li-Wei
Lin, Chin-Teng
description Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors make them uncomfortable and inconvenient for users. To overcome the limitations of conventional EEG measurement systems, a wireless and wearable multichannel EEG measurement system is proposed in this paper. This system includes a wireless data acquisition device, dry spring-loaded sensors, and a size-adjustable soft cap. We compared the performance of the proposed system using dry versus conventional wet sensors. A significant positive correlation between readings from wet and dry sensors was achieved, thus demonstrating the performance of the system. Moreover, four different features of EEG signals (i.e., normal, eye-blinking, closed-eyes, and teeth-clenching signals) were measured by 16 dry sensors to ensure that they could be detected in real-life cognitive neuroscience applications. Thus, we have shown that it is possible to reliably measure EEG signals using the proposed system. This paper presents novel insights into the field of cognitive neuroscience, showing the possibility of studying brain function under real-life conditions.
doi_str_mv 10.1109/TIM.2013.2293222
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1545956949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6704315</ieee_id><sourcerecordid>1620064361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-c3b3546998c6b7d4fb8a9caca3e229535190ad935ee3b8edb9bbb23baaf7dd1b3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqWwI7FYYmFJ8XfiEZXyIRUYWsRo2c6FBqVxsVOk_nuMihiY7obnPd37IHROyYRSoq-Xj08TRiifMKY5Y-wAjaiUZaGVYodoRAitCi2kOkYnKX0QQkolyhFqb_Bz-IIOU1VMV7bv8_rWRuggJbzYpQHWuAkRzzrwQwzQe9isbBfeo92sdvgJbNpGWEM_pJwbVvg27vBiE9v-vZgHW0ONF9CnENMpOmpsl-Dsd47R691sOX0o5i_3j9ObeeFFxYfCc8elUFpXXrmyFo2rrPbWWw65meSSamJrzSUAdxXUTjvnGHfWNmVdU8fH6Gp_dxPD5xbSYNZt8tB1toewTYYqRogSXNGMXv5DP8I29vk7Q6WQWiotdKbInvIxpBShMbne2sadocT8uDfZvflxb37d58jFPtICwB-uSiI4lfwbF4mAyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545956949</pqid></control><display><type>article</type><title>A Novel 16-Channel Wireless System for Electroencephalography Measurements With Dry Spring-Loaded Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Lun-De ; Wu, Shang-Lin ; Liou, Chang-Hong ; Lu, Shao-Wei ; Chen, Shi-An ; Chen, Sheng-Fu ; Ko, Li-Wei ; Lin, Chin-Teng</creator><creatorcontrib>Liao, Lun-De ; Wu, Shang-Lin ; Liou, Chang-Hong ; Lu, Shao-Wei ; Chen, Shi-An ; Chen, Sheng-Fu ; Ko, Li-Wei ; Lin, Chin-Teng</creatorcontrib><description>Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors make them uncomfortable and inconvenient for users. To overcome the limitations of conventional EEG measurement systems, a wireless and wearable multichannel EEG measurement system is proposed in this paper. This system includes a wireless data acquisition device, dry spring-loaded sensors, and a size-adjustable soft cap. We compared the performance of the proposed system using dry versus conventional wet sensors. A significant positive correlation between readings from wet and dry sensors was achieved, thus demonstrating the performance of the system. Moreover, four different features of EEG signals (i.e., normal, eye-blinking, closed-eyes, and teeth-clenching signals) were measured by 16 dry sensors to ensure that they could be detected in real-life cognitive neuroscience applications. Thus, we have shown that it is possible to reliably measure EEG signals using the proposed system. This paper presents novel insights into the field of cognitive neuroscience, showing the possibility of studying brain function under real-life conditions.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2013.2293222</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alzheimer's disease ; Brain ; Diseases ; Dry sensor ; Drying ; Electroencephalography ; electroencephalography (EEG) ; electroencephalography measurement system ; Instrumentation ; Nervous system ; Neurosciences ; Probes ; Scalp ; Sensor systems ; Sensors ; size-adjustable soft cap ; Wireless communication ; wireless data acquisition device ; Wireless sensor networks</subject><ispartof>IEEE transactions on instrumentation and measurement, 2014-06, Vol.63 (6), p.1545-1555</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-c3b3546998c6b7d4fb8a9caca3e229535190ad935ee3b8edb9bbb23baaf7dd1b3</citedby><cites>FETCH-LOGICAL-c483t-c3b3546998c6b7d4fb8a9caca3e229535190ad935ee3b8edb9bbb23baaf7dd1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6704315$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6704315$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Lun-De</creatorcontrib><creatorcontrib>Wu, Shang-Lin</creatorcontrib><creatorcontrib>Liou, Chang-Hong</creatorcontrib><creatorcontrib>Lu, Shao-Wei</creatorcontrib><creatorcontrib>Chen, Shi-An</creatorcontrib><creatorcontrib>Chen, Sheng-Fu</creatorcontrib><creatorcontrib>Ko, Li-Wei</creatorcontrib><creatorcontrib>Lin, Chin-Teng</creatorcontrib><title>A Novel 16-Channel Wireless System for Electroencephalography Measurements With Dry Spring-Loaded Sensors</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors make them uncomfortable and inconvenient for users. To overcome the limitations of conventional EEG measurement systems, a wireless and wearable multichannel EEG measurement system is proposed in this paper. This system includes a wireless data acquisition device, dry spring-loaded sensors, and a size-adjustable soft cap. We compared the performance of the proposed system using dry versus conventional wet sensors. A significant positive correlation between readings from wet and dry sensors was achieved, thus demonstrating the performance of the system. Moreover, four different features of EEG signals (i.e., normal, eye-blinking, closed-eyes, and teeth-clenching signals) were measured by 16 dry sensors to ensure that they could be detected in real-life cognitive neuroscience applications. Thus, we have shown that it is possible to reliably measure EEG signals using the proposed system. This paper presents novel insights into the field of cognitive neuroscience, showing the possibility of studying brain function under real-life conditions.</description><subject>Alzheimer's disease</subject><subject>Brain</subject><subject>Diseases</subject><subject>Dry sensor</subject><subject>Drying</subject><subject>Electroencephalography</subject><subject>electroencephalography (EEG)</subject><subject>electroencephalography measurement system</subject><subject>Instrumentation</subject><subject>Nervous system</subject><subject>Neurosciences</subject><subject>Probes</subject><subject>Scalp</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>size-adjustable soft cap</subject><subject>Wireless communication</subject><subject>wireless data acquisition device</subject><subject>Wireless sensor networks</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqWwI7FYYmFJ8XfiEZXyIRUYWsRo2c6FBqVxsVOk_nuMihiY7obnPd37IHROyYRSoq-Xj08TRiifMKY5Y-wAjaiUZaGVYodoRAitCi2kOkYnKX0QQkolyhFqb_Bz-IIOU1VMV7bv8_rWRuggJbzYpQHWuAkRzzrwQwzQe9isbBfeo92sdvgJbNpGWEM_pJwbVvg27vBiE9v-vZgHW0ONF9CnENMpOmpsl-Dsd47R691sOX0o5i_3j9ObeeFFxYfCc8elUFpXXrmyFo2rrPbWWw65meSSamJrzSUAdxXUTjvnGHfWNmVdU8fH6Gp_dxPD5xbSYNZt8tB1toewTYYqRogSXNGMXv5DP8I29vk7Q6WQWiotdKbInvIxpBShMbne2sadocT8uDfZvflxb37d58jFPtICwB-uSiI4lfwbF4mAyw</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Liao, Lun-De</creator><creator>Wu, Shang-Lin</creator><creator>Liou, Chang-Hong</creator><creator>Lu, Shao-Wei</creator><creator>Chen, Shi-An</creator><creator>Chen, Sheng-Fu</creator><creator>Ko, Li-Wei</creator><creator>Lin, Chin-Teng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140601</creationdate><title>A Novel 16-Channel Wireless System for Electroencephalography Measurements With Dry Spring-Loaded Sensors</title><author>Liao, Lun-De ; Wu, Shang-Lin ; Liou, Chang-Hong ; Lu, Shao-Wei ; Chen, Shi-An ; Chen, Sheng-Fu ; Ko, Li-Wei ; Lin, Chin-Teng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-c3b3546998c6b7d4fb8a9caca3e229535190ad935ee3b8edb9bbb23baaf7dd1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alzheimer's disease</topic><topic>Brain</topic><topic>Diseases</topic><topic>Dry sensor</topic><topic>Drying</topic><topic>Electroencephalography</topic><topic>electroencephalography (EEG)</topic><topic>electroencephalography measurement system</topic><topic>Instrumentation</topic><topic>Nervous system</topic><topic>Neurosciences</topic><topic>Probes</topic><topic>Scalp</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>size-adjustable soft cap</topic><topic>Wireless communication</topic><topic>wireless data acquisition device</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Lun-De</creatorcontrib><creatorcontrib>Wu, Shang-Lin</creatorcontrib><creatorcontrib>Liou, Chang-Hong</creatorcontrib><creatorcontrib>Lu, Shao-Wei</creatorcontrib><creatorcontrib>Chen, Shi-An</creatorcontrib><creatorcontrib>Chen, Sheng-Fu</creatorcontrib><creatorcontrib>Ko, Li-Wei</creatorcontrib><creatorcontrib>Lin, Chin-Teng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Lun-De</au><au>Wu, Shang-Lin</au><au>Liou, Chang-Hong</au><au>Lu, Shao-Wei</au><au>Chen, Shi-An</au><au>Chen, Sheng-Fu</au><au>Ko, Li-Wei</au><au>Lin, Chin-Teng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel 16-Channel Wireless System for Electroencephalography Measurements With Dry Spring-Loaded Sensors</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>63</volume><issue>6</issue><spage>1545</spage><epage>1555</epage><pages>1545-1555</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Understanding brain function using electroencephalography (EEG) is an important issue for cerebral nervous system diseases, especially for epilepsy and Alzheimer's disease. Many EEG measurement systems are used reliably to study these diseases, but their bulky size and the use of wet sensors make them uncomfortable and inconvenient for users. To overcome the limitations of conventional EEG measurement systems, a wireless and wearable multichannel EEG measurement system is proposed in this paper. This system includes a wireless data acquisition device, dry spring-loaded sensors, and a size-adjustable soft cap. We compared the performance of the proposed system using dry versus conventional wet sensors. A significant positive correlation between readings from wet and dry sensors was achieved, thus demonstrating the performance of the system. Moreover, four different features of EEG signals (i.e., normal, eye-blinking, closed-eyes, and teeth-clenching signals) were measured by 16 dry sensors to ensure that they could be detected in real-life cognitive neuroscience applications. Thus, we have shown that it is possible to reliably measure EEG signals using the proposed system. This paper presents novel insights into the field of cognitive neuroscience, showing the possibility of studying brain function under real-life conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2013.2293222</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2014-06, Vol.63 (6), p.1545-1555
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_1545956949
source IEEE Electronic Library (IEL)
subjects Alzheimer's disease
Brain
Diseases
Dry sensor
Drying
Electroencephalography
electroencephalography (EEG)
electroencephalography measurement system
Instrumentation
Nervous system
Neurosciences
Probes
Scalp
Sensor systems
Sensors
size-adjustable soft cap
Wireless communication
wireless data acquisition device
Wireless sensor networks
title A Novel 16-Channel Wireless System for Electroencephalography Measurements With Dry Spring-Loaded Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%2016-Channel%20Wireless%20System%20for%20Electroencephalography%20Measurements%20With%20Dry%20Spring-Loaded%20Sensors&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Liao,%20Lun-De&rft.date=2014-06-01&rft.volume=63&rft.issue=6&rft.spage=1545&rft.epage=1555&rft.pages=1545-1555&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2013.2293222&rft_dat=%3Cproquest_RIE%3E1620064361%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545956949&rft_id=info:pmid/&rft_ieee_id=6704315&rfr_iscdi=true