Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations

In this paper, we describe the design of Neurogrid, a neuromorphic system for simulating large-scale neural models in real time. Neuromorphic systems realize the function of biological neural systems by emulating their structure. Designers of such systems face three major design choices: 1) whether...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2014-05, Vol.102 (5), p.699-716
Hauptverfasser: Benjamin, Ben Varkey, Boahen, Kwabena, Gao, Peiran, McQuinn, Emmett, Choudhary, Swadesh, Chandrasekaran, Anand R., Bussat, Jean-Marie, Alvarez-Icaza, Rodrigo, Arthur, John V., Merolla, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 716
container_issue 5
container_start_page 699
container_title Proceedings of the IEEE
container_volume 102
creator Benjamin, Ben Varkey
Boahen, Kwabena
Gao, Peiran
McQuinn, Emmett
Choudhary, Swadesh
Chandrasekaran, Anand R.
Bussat, Jean-Marie
Alvarez-Icaza, Rodrigo
Arthur, John V.
Merolla, Paul A.
description In this paper, we describe the design of Neurogrid, a neuromorphic system for simulating large-scale neural models in real time. Neuromorphic systems realize the function of biological neural systems by emulating their structure. Designers of such systems face three major design choices: 1) whether to emulate the four neural elements-axonal arbor, synapse, dendritic tree, and soma-with dedicated or shared electronic circuits; 2) whether to implement these electronic circuits in an analog or digital manner; and 3) whether to interconnect arrays of these silicon neurons with a mesh or a tree network. The choices we made were: 1) we emulated all neural elements except the soma with shared electronic circuits; this choice maximized the number of synaptic connections; 2) we realized all electronic circuits except those for axonal arbors in an analog manner; this choice maximized energy efficiency; and 3) we interconnected neural arrays in a tree network; this choice maximized throughput. These three choices made it possible to simulate a million neurons with billions of synaptic connections in real time-for the first time-using 16 Neurocores integrated on a board that consumes three watts.
doi_str_mv 10.1109/JPROC.2014.2313565
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1545905580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6805187</ieee_id><sourcerecordid>3377262381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-fe45e2ca8ac4fdad9b325abe7ec982105cefb78d9660f3bad9223ead5141062f3</originalsourceid><addsrcrecordid>eNqF0b1OwzAUBWALgUQpvAAskVhYUq7tOInZqvKvliJK58hxboKrtCl2ItG3x6UVAwvTXb5zhnsIOacwoBTk9fPr23Q0YECjAeOUi1gckB4VIg0ZE_Eh6QHQNJSMymNy4twCADziPTJ_wc42lTXFTTAMJuYLi3C4UnVThbemMq2qg0lXt0Z_mHUw27gWl0HZ2GCsbIXhTKsag22FdzOz7GrVmmblTslRqWqHZ_vbJ_P7u_fRYziePjyNhuNQRxTasMRIINMqVToqC1XInDOhckxQy5RREBrLPEkLGcdQ8twDxjiqQlAfj1nJ--Rq17u2zWeHrs2Wxmmsa7XCpnMZTRLgIBIu_6cxA5A0lsLTyz900XTWP8UrEQkJ_q_gFdspbRvnLJbZ2pqlspuMQrYdJfsZJduOku1H8aGLXcgg4m8gTkHQNOHfWUaHsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545905580</pqid></control><display><type>article</type><title>Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations</title><source>IEEE Electronic Library (IEL)</source><creator>Benjamin, Ben Varkey ; Boahen, Kwabena ; Gao, Peiran ; McQuinn, Emmett ; Choudhary, Swadesh ; Chandrasekaran, Anand R. ; Bussat, Jean-Marie ; Alvarez-Icaza, Rodrigo ; Arthur, John V. ; Merolla, Paul A.</creator><creatorcontrib>Benjamin, Ben Varkey ; Boahen, Kwabena ; Gao, Peiran ; McQuinn, Emmett ; Choudhary, Swadesh ; Chandrasekaran, Anand R. ; Bussat, Jean-Marie ; Alvarez-Icaza, Rodrigo ; Arthur, John V. ; Merolla, Paul A.</creatorcontrib><description>In this paper, we describe the design of Neurogrid, a neuromorphic system for simulating large-scale neural models in real time. Neuromorphic systems realize the function of biological neural systems by emulating their structure. Designers of such systems face three major design choices: 1) whether to emulate the four neural elements-axonal arbor, synapse, dendritic tree, and soma-with dedicated or shared electronic circuits; 2) whether to implement these electronic circuits in an analog or digital manner; and 3) whether to interconnect arrays of these silicon neurons with a mesh or a tree network. The choices we made were: 1) we emulated all neural elements except the soma with shared electronic circuits; this choice maximized the number of synaptic connections; 2) we realized all electronic circuits except those for axonal arbors in an analog manner; this choice maximized energy efficiency; and 3) we interconnected neural arrays in a tree network; this choice maximized throughput. These three choices made it possible to simulate a million neurons with billions of synaptic connections in real time-for the first time-using 16 Neurocores integrated on a board that consumes three watts.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2014.2313565</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog circuits ; application specific integrated circuits ; Arrays ; asynchronous circuits ; brain modeling ; Circuits ; computational neuroscience ; Computer architecture ; Computer simulation ; Design ; Design engineering ; Electric circuits ; Electronic circuits ; Integrated circuit modeling ; interconnection networks ; Mathematical models ; mixed analog-digital integrated circuits ; Nerve fibers ; Networks ; neural network hardware ; Neural networks ; neuromorphic electronic systems ; Neuroscience ; Random access memory ; Synchronous digital hierarchy ; Trees</subject><ispartof>Proceedings of the IEEE, 2014-05, Vol.102 (5), p.699-716</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-fe45e2ca8ac4fdad9b325abe7ec982105cefb78d9660f3bad9223ead5141062f3</citedby><cites>FETCH-LOGICAL-c410t-fe45e2ca8ac4fdad9b325abe7ec982105cefb78d9660f3bad9223ead5141062f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6805187$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6805187$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Benjamin, Ben Varkey</creatorcontrib><creatorcontrib>Boahen, Kwabena</creatorcontrib><creatorcontrib>Gao, Peiran</creatorcontrib><creatorcontrib>McQuinn, Emmett</creatorcontrib><creatorcontrib>Choudhary, Swadesh</creatorcontrib><creatorcontrib>Chandrasekaran, Anand R.</creatorcontrib><creatorcontrib>Bussat, Jean-Marie</creatorcontrib><creatorcontrib>Alvarez-Icaza, Rodrigo</creatorcontrib><creatorcontrib>Arthur, John V.</creatorcontrib><creatorcontrib>Merolla, Paul A.</creatorcontrib><title>Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>In this paper, we describe the design of Neurogrid, a neuromorphic system for simulating large-scale neural models in real time. Neuromorphic systems realize the function of biological neural systems by emulating their structure. Designers of such systems face three major design choices: 1) whether to emulate the four neural elements-axonal arbor, synapse, dendritic tree, and soma-with dedicated or shared electronic circuits; 2) whether to implement these electronic circuits in an analog or digital manner; and 3) whether to interconnect arrays of these silicon neurons with a mesh or a tree network. The choices we made were: 1) we emulated all neural elements except the soma with shared electronic circuits; this choice maximized the number of synaptic connections; 2) we realized all electronic circuits except those for axonal arbors in an analog manner; this choice maximized energy efficiency; and 3) we interconnected neural arrays in a tree network; this choice maximized throughput. These three choices made it possible to simulate a million neurons with billions of synaptic connections in real time-for the first time-using 16 Neurocores integrated on a board that consumes three watts.</description><subject>Analog circuits</subject><subject>application specific integrated circuits</subject><subject>Arrays</subject><subject>asynchronous circuits</subject><subject>brain modeling</subject><subject>Circuits</subject><subject>computational neuroscience</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Design</subject><subject>Design engineering</subject><subject>Electric circuits</subject><subject>Electronic circuits</subject><subject>Integrated circuit modeling</subject><subject>interconnection networks</subject><subject>Mathematical models</subject><subject>mixed analog-digital integrated circuits</subject><subject>Nerve fibers</subject><subject>Networks</subject><subject>neural network hardware</subject><subject>Neural networks</subject><subject>neuromorphic electronic systems</subject><subject>Neuroscience</subject><subject>Random access memory</subject><subject>Synchronous digital hierarchy</subject><subject>Trees</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0b1OwzAUBWALgUQpvAAskVhYUq7tOInZqvKvliJK58hxboKrtCl2ItG3x6UVAwvTXb5zhnsIOacwoBTk9fPr23Q0YECjAeOUi1gckB4VIg0ZE_Eh6QHQNJSMymNy4twCADziPTJ_wc42lTXFTTAMJuYLi3C4UnVThbemMq2qg0lXt0Z_mHUw27gWl0HZ2GCsbIXhTKsag22FdzOz7GrVmmblTslRqWqHZ_vbJ_P7u_fRYziePjyNhuNQRxTasMRIINMqVToqC1XInDOhckxQy5RREBrLPEkLGcdQ8twDxjiqQlAfj1nJ--Rq17u2zWeHrs2Wxmmsa7XCpnMZTRLgIBIu_6cxA5A0lsLTyz900XTWP8UrEQkJ_q_gFdspbRvnLJbZ2pqlspuMQrYdJfsZJduOku1H8aGLXcgg4m8gTkHQNOHfWUaHsQ</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Benjamin, Ben Varkey</creator><creator>Boahen, Kwabena</creator><creator>Gao, Peiran</creator><creator>McQuinn, Emmett</creator><creator>Choudhary, Swadesh</creator><creator>Chandrasekaran, Anand R.</creator><creator>Bussat, Jean-Marie</creator><creator>Alvarez-Icaza, Rodrigo</creator><creator>Arthur, John V.</creator><creator>Merolla, Paul A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140501</creationdate><title>Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations</title><author>Benjamin, Ben Varkey ; Boahen, Kwabena ; Gao, Peiran ; McQuinn, Emmett ; Choudhary, Swadesh ; Chandrasekaran, Anand R. ; Bussat, Jean-Marie ; Alvarez-Icaza, Rodrigo ; Arthur, John V. ; Merolla, Paul A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-fe45e2ca8ac4fdad9b325abe7ec982105cefb78d9660f3bad9223ead5141062f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analog circuits</topic><topic>application specific integrated circuits</topic><topic>Arrays</topic><topic>asynchronous circuits</topic><topic>brain modeling</topic><topic>Circuits</topic><topic>computational neuroscience</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Design</topic><topic>Design engineering</topic><topic>Electric circuits</topic><topic>Electronic circuits</topic><topic>Integrated circuit modeling</topic><topic>interconnection networks</topic><topic>Mathematical models</topic><topic>mixed analog-digital integrated circuits</topic><topic>Nerve fibers</topic><topic>Networks</topic><topic>neural network hardware</topic><topic>Neural networks</topic><topic>neuromorphic electronic systems</topic><topic>Neuroscience</topic><topic>Random access memory</topic><topic>Synchronous digital hierarchy</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benjamin, Ben Varkey</creatorcontrib><creatorcontrib>Boahen, Kwabena</creatorcontrib><creatorcontrib>Gao, Peiran</creatorcontrib><creatorcontrib>McQuinn, Emmett</creatorcontrib><creatorcontrib>Choudhary, Swadesh</creatorcontrib><creatorcontrib>Chandrasekaran, Anand R.</creatorcontrib><creatorcontrib>Bussat, Jean-Marie</creatorcontrib><creatorcontrib>Alvarez-Icaza, Rodrigo</creatorcontrib><creatorcontrib>Arthur, John V.</creatorcontrib><creatorcontrib>Merolla, Paul A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benjamin, Ben Varkey</au><au>Boahen, Kwabena</au><au>Gao, Peiran</au><au>McQuinn, Emmett</au><au>Choudhary, Swadesh</au><au>Chandrasekaran, Anand R.</au><au>Bussat, Jean-Marie</au><au>Alvarez-Icaza, Rodrigo</au><au>Arthur, John V.</au><au>Merolla, Paul A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>102</volume><issue>5</issue><spage>699</spage><epage>716</epage><pages>699-716</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>In this paper, we describe the design of Neurogrid, a neuromorphic system for simulating large-scale neural models in real time. Neuromorphic systems realize the function of biological neural systems by emulating their structure. Designers of such systems face three major design choices: 1) whether to emulate the four neural elements-axonal arbor, synapse, dendritic tree, and soma-with dedicated or shared electronic circuits; 2) whether to implement these electronic circuits in an analog or digital manner; and 3) whether to interconnect arrays of these silicon neurons with a mesh or a tree network. The choices we made were: 1) we emulated all neural elements except the soma with shared electronic circuits; this choice maximized the number of synaptic connections; 2) we realized all electronic circuits except those for axonal arbors in an analog manner; this choice maximized energy efficiency; and 3) we interconnected neural arrays in a tree network; this choice maximized throughput. These three choices made it possible to simulate a million neurons with billions of synaptic connections in real time-for the first time-using 16 Neurocores integrated on a board that consumes three watts.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2014.2313565</doi><tpages>18</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2014-05, Vol.102 (5), p.699-716
issn 0018-9219
1558-2256
language eng
recordid cdi_proquest_journals_1545905580
source IEEE Electronic Library (IEL)
subjects Analog circuits
application specific integrated circuits
Arrays
asynchronous circuits
brain modeling
Circuits
computational neuroscience
Computer architecture
Computer simulation
Design
Design engineering
Electric circuits
Electronic circuits
Integrated circuit modeling
interconnection networks
Mathematical models
mixed analog-digital integrated circuits
Nerve fibers
Networks
neural network hardware
Neural networks
neuromorphic electronic systems
Neuroscience
Random access memory
Synchronous digital hierarchy
Trees
title Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurogrid:%20A%20Mixed-Analog-Digital%20Multichip%20System%20for%20Large-Scale%20Neural%20Simulations&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Benjamin,%20Ben%20Varkey&rft.date=2014-05-01&rft.volume=102&rft.issue=5&rft.spage=699&rft.epage=716&rft.pages=699-716&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2014.2313565&rft_dat=%3Cproquest_RIE%3E3377262381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545905580&rft_id=info:pmid/&rft_ieee_id=6805187&rfr_iscdi=true