Oriented Gaussian Mixture Models for Nonrigid 2D/3D Coronary Artery Registration

2D/3D registration of patient vasculature from preinterventional computed tomography angiography (CTA) to interventional X-ray angiography is of interest to improve guidance in percutaneous coronary interventions. In this paper we present a novel feature based 2D/3D registration framework, that is b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2014-05, Vol.33 (5), p.1023-1034
Hauptverfasser: Baka, N., Metz, C. T., Schultz, C. J., van Geuns, R.-J, Niessen, W. J., van Walsum, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1034
container_issue 5
container_start_page 1023
container_title IEEE transactions on medical imaging
container_volume 33
creator Baka, N.
Metz, C. T.
Schultz, C. J.
van Geuns, R.-J
Niessen, W. J.
van Walsum, T.
description 2D/3D registration of patient vasculature from preinterventional computed tomography angiography (CTA) to interventional X-ray angiography is of interest to improve guidance in percutaneous coronary interventions. In this paper we present a novel feature based 2D/3D registration framework, that is based on probabilistic point correspondences, and show its usefulness on aligning 3D coronary artery centerlines derived from CTA images with their 2D projection derived from interventional X-ray angiography. The registration framework is an extension of the Gaussian mixture model (GMM) based point-set registration to the 2D/3D setting, with a modified distance metric. We also propose a way to incorporate orientation in the registration, and show its added value for artery registration on patient datasets as well as in simulation experiments. The oriented GMM registration achieved a median accuracy of 1.06 mm, with a convergence rate of 81% for nonrigid vessel centerline registration on 12 patient datasets, using a statistical shape model. The method thereby outperformed the iterative closest point algorithm, the GMM registration without orientation, and two recently published methods on 2D/3D coronary artery registration.
doi_str_mv 10.1109/TMI.2014.2300117
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1545894611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6712113</ieee_id><sourcerecordid>1519840540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-16557dfdf628f8aface36748fb476822fc4dfc523efa691fb3064bb274c0952f3</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkVJqR2390IgLOSSyzojrT6PwWlSg52EkkJvi3Z3ZBTsVSLtQvvvq2DHh556msM87wwzDyFfKcwpBXP1tF7OGVA-ZxUApeoDmVIhdMkE_3VCpsCULgEkm5DTlJ4zwgWYT2TCuFJgQE_J40P02A_YFXd2TMnbvlj738MYsViHDrepcCEW96GPfuO7gt1cVTfFIsTQ2_inuI4D5vIDNz4N0Q4-9J_JR2e3Cb8c6oz8vP32tPherh7ulovrVdlypoaSSiFU5zonmXbaOttiJRXXruFKasZcyzvXClahs9JQ11QgedMwxVswgrlqRi73c19ieB0xDfXOpxa3W9tjGFNNhZSac2rMf6DUaA6CQ0Yv_kGfwxj7fEimuNCGS0ozBXuqjSGliK5-iX6XH1JTqN_E1FlM_SamPojJkfPD4LHZYXcMvJvIwNke8Ih4bEtFWV5Y_QXvzo-1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545894611</pqid></control><display><type>article</type><title>Oriented Gaussian Mixture Models for Nonrigid 2D/3D Coronary Artery Registration</title><source>IEEE Electronic Library (IEL)</source><creator>Baka, N. ; Metz, C. T. ; Schultz, C. J. ; van Geuns, R.-J ; Niessen, W. J. ; van Walsum, T.</creator><creatorcontrib>Baka, N. ; Metz, C. T. ; Schultz, C. J. ; van Geuns, R.-J ; Niessen, W. J. ; van Walsum, T.</creatorcontrib><description>2D/3D registration of patient vasculature from preinterventional computed tomography angiography (CTA) to interventional X-ray angiography is of interest to improve guidance in percutaneous coronary interventions. In this paper we present a novel feature based 2D/3D registration framework, that is based on probabilistic point correspondences, and show its usefulness on aligning 3D coronary artery centerlines derived from CTA images with their 2D projection derived from interventional X-ray angiography. The registration framework is an extension of the Gaussian mixture model (GMM) based point-set registration to the 2D/3D setting, with a modified distance metric. We also propose a way to incorporate orientation in the registration, and show its added value for artery registration on patient datasets as well as in simulation experiments. The oriented GMM registration achieved a median accuracy of 1.06 mm, with a convergence rate of 81% for nonrigid vessel centerline registration on 12 patient datasets, using a statistical shape model. The method thereby outperformed the iterative closest point algorithm, the GMM registration without orientation, and two recently published methods on 2D/3D coronary artery registration.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2014.2300117</identifier><identifier>PMID: 24770908</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Angina pectoris ; Arteries ; Biomedical measurement ; Computed tomography angiography ; Coronary Angiography - methods ; Coronary vessels ; Coronary Vessels - diagnostic imaging ; Gaussian mixture model (GMM) ; Gaussian processes ; Humans ; Imaging, Three-Dimensional - methods ; Medical imaging ; Normal Distribution ; Percutaneous Coronary Intervention ; percutaneous coronary intervention (PCI) ; point-set ; Shape analysis ; statistical shape models (SSM) ; Surgery, Computer-Assisted ; Three-dimensional displays ; Veins &amp; arteries ; X-rays</subject><ispartof>IEEE transactions on medical imaging, 2014-05, Vol.33 (5), p.1023-1034</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-16557dfdf628f8aface36748fb476822fc4dfc523efa691fb3064bb274c0952f3</citedby><cites>FETCH-LOGICAL-c427t-16557dfdf628f8aface36748fb476822fc4dfc523efa691fb3064bb274c0952f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6712113$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6712113$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24770908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baka, N.</creatorcontrib><creatorcontrib>Metz, C. T.</creatorcontrib><creatorcontrib>Schultz, C. J.</creatorcontrib><creatorcontrib>van Geuns, R.-J</creatorcontrib><creatorcontrib>Niessen, W. J.</creatorcontrib><creatorcontrib>van Walsum, T.</creatorcontrib><title>Oriented Gaussian Mixture Models for Nonrigid 2D/3D Coronary Artery Registration</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>2D/3D registration of patient vasculature from preinterventional computed tomography angiography (CTA) to interventional X-ray angiography is of interest to improve guidance in percutaneous coronary interventions. In this paper we present a novel feature based 2D/3D registration framework, that is based on probabilistic point correspondences, and show its usefulness on aligning 3D coronary artery centerlines derived from CTA images with their 2D projection derived from interventional X-ray angiography. The registration framework is an extension of the Gaussian mixture model (GMM) based point-set registration to the 2D/3D setting, with a modified distance metric. We also propose a way to incorporate orientation in the registration, and show its added value for artery registration on patient datasets as well as in simulation experiments. The oriented GMM registration achieved a median accuracy of 1.06 mm, with a convergence rate of 81% for nonrigid vessel centerline registration on 12 patient datasets, using a statistical shape model. The method thereby outperformed the iterative closest point algorithm, the GMM registration without orientation, and two recently published methods on 2D/3D coronary artery registration.</description><subject>Algorithms</subject><subject>Angina pectoris</subject><subject>Arteries</subject><subject>Biomedical measurement</subject><subject>Computed tomography angiography</subject><subject>Coronary Angiography - methods</subject><subject>Coronary vessels</subject><subject>Coronary Vessels - diagnostic imaging</subject><subject>Gaussian mixture model (GMM)</subject><subject>Gaussian processes</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Medical imaging</subject><subject>Normal Distribution</subject><subject>Percutaneous Coronary Intervention</subject><subject>percutaneous coronary intervention (PCI)</subject><subject>point-set</subject><subject>Shape analysis</subject><subject>statistical shape models (SSM)</subject><subject>Surgery, Computer-Assisted</subject><subject>Three-dimensional displays</subject><subject>Veins &amp; arteries</subject><subject>X-rays</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1rGzEQhkVJqR2390IgLOSSyzojrT6PwWlSg52EkkJvi3Z3ZBTsVSLtQvvvq2DHh556msM87wwzDyFfKcwpBXP1tF7OGVA-ZxUApeoDmVIhdMkE_3VCpsCULgEkm5DTlJ4zwgWYT2TCuFJgQE_J40P02A_YFXd2TMnbvlj738MYsViHDrepcCEW96GPfuO7gt1cVTfFIsTQ2_inuI4D5vIDNz4N0Q4-9J_JR2e3Cb8c6oz8vP32tPherh7ulovrVdlypoaSSiFU5zonmXbaOttiJRXXruFKasZcyzvXClahs9JQ11QgedMwxVswgrlqRi73c19ieB0xDfXOpxa3W9tjGFNNhZSac2rMf6DUaA6CQ0Yv_kGfwxj7fEimuNCGS0ozBXuqjSGliK5-iX6XH1JTqN_E1FlM_SamPojJkfPD4LHZYXcMvJvIwNke8Ih4bEtFWV5Y_QXvzo-1</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Baka, N.</creator><creator>Metz, C. T.</creator><creator>Schultz, C. J.</creator><creator>van Geuns, R.-J</creator><creator>Niessen, W. J.</creator><creator>van Walsum, T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140501</creationdate><title>Oriented Gaussian Mixture Models for Nonrigid 2D/3D Coronary Artery Registration</title><author>Baka, N. ; Metz, C. T. ; Schultz, C. J. ; van Geuns, R.-J ; Niessen, W. J. ; van Walsum, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-16557dfdf628f8aface36748fb476822fc4dfc523efa691fb3064bb274c0952f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Angina pectoris</topic><topic>Arteries</topic><topic>Biomedical measurement</topic><topic>Computed tomography angiography</topic><topic>Coronary Angiography - methods</topic><topic>Coronary vessels</topic><topic>Coronary Vessels - diagnostic imaging</topic><topic>Gaussian mixture model (GMM)</topic><topic>Gaussian processes</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Medical imaging</topic><topic>Normal Distribution</topic><topic>Percutaneous Coronary Intervention</topic><topic>percutaneous coronary intervention (PCI)</topic><topic>point-set</topic><topic>Shape analysis</topic><topic>statistical shape models (SSM)</topic><topic>Surgery, Computer-Assisted</topic><topic>Three-dimensional displays</topic><topic>Veins &amp; arteries</topic><topic>X-rays</topic><toplevel>online_resources</toplevel><creatorcontrib>Baka, N.</creatorcontrib><creatorcontrib>Metz, C. T.</creatorcontrib><creatorcontrib>Schultz, C. J.</creatorcontrib><creatorcontrib>van Geuns, R.-J</creatorcontrib><creatorcontrib>Niessen, W. J.</creatorcontrib><creatorcontrib>van Walsum, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baka, N.</au><au>Metz, C. T.</au><au>Schultz, C. J.</au><au>van Geuns, R.-J</au><au>Niessen, W. J.</au><au>van Walsum, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oriented Gaussian Mixture Models for Nonrigid 2D/3D Coronary Artery Registration</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>33</volume><issue>5</issue><spage>1023</spage><epage>1034</epage><pages>1023-1034</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>2D/3D registration of patient vasculature from preinterventional computed tomography angiography (CTA) to interventional X-ray angiography is of interest to improve guidance in percutaneous coronary interventions. In this paper we present a novel feature based 2D/3D registration framework, that is based on probabilistic point correspondences, and show its usefulness on aligning 3D coronary artery centerlines derived from CTA images with their 2D projection derived from interventional X-ray angiography. The registration framework is an extension of the Gaussian mixture model (GMM) based point-set registration to the 2D/3D setting, with a modified distance metric. We also propose a way to incorporate orientation in the registration, and show its added value for artery registration on patient datasets as well as in simulation experiments. The oriented GMM registration achieved a median accuracy of 1.06 mm, with a convergence rate of 81% for nonrigid vessel centerline registration on 12 patient datasets, using a statistical shape model. The method thereby outperformed the iterative closest point algorithm, the GMM registration without orientation, and two recently published methods on 2D/3D coronary artery registration.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24770908</pmid><doi>10.1109/TMI.2014.2300117</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2014-05, Vol.33 (5), p.1023-1034
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_1545894611
source IEEE Electronic Library (IEL)
subjects Algorithms
Angina pectoris
Arteries
Biomedical measurement
Computed tomography angiography
Coronary Angiography - methods
Coronary vessels
Coronary Vessels - diagnostic imaging
Gaussian mixture model (GMM)
Gaussian processes
Humans
Imaging, Three-Dimensional - methods
Medical imaging
Normal Distribution
Percutaneous Coronary Intervention
percutaneous coronary intervention (PCI)
point-set
Shape analysis
statistical shape models (SSM)
Surgery, Computer-Assisted
Three-dimensional displays
Veins & arteries
X-rays
title Oriented Gaussian Mixture Models for Nonrigid 2D/3D Coronary Artery Registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oriented%20Gaussian%20Mixture%20Models%20for%20Nonrigid%202D/3D%20Coronary%20Artery%20Registration&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Baka,%20N.&rft.date=2014-05-01&rft.volume=33&rft.issue=5&rft.spage=1023&rft.epage=1034&rft.pages=1023-1034&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2014.2300117&rft_dat=%3Cproquest_RIE%3E1519840540%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545894611&rft_id=info:pmid/24770908&rft_ieee_id=6712113&rfr_iscdi=true