simple method based on image processing to estimate primary pigment levels of Sichuan Dark Tea during post-fermentation

A new method quantifying the primary pigments of Sichuan Dark Tea (SDT) rapidly based on the image processing was established. The correlations between the color parameters obtained from SDT images by employing the scanner and Photoshop software and the primary pigment levels were analyzed, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European food research & technology 2014-08, Vol.239 (2), p.357-363
Hauptverfasser: Zou, Yao, Qi, Guinian, Chen, Shengxiang, Tan, Liqiang, Li, Wei, Liu, Tingting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 2
container_start_page 357
container_title European food research & technology
container_volume 239
creator Zou, Yao
Qi, Guinian
Chen, Shengxiang
Tan, Liqiang
Li, Wei
Liu, Tingting
description A new method quantifying the primary pigments of Sichuan Dark Tea (SDT) rapidly based on the image processing was established. The correlations between the color parameters obtained from SDT images by employing the scanner and Photoshop software and the primary pigment levels were analyzed, and the regression models based on these color parameters were established as well. The results showed that the contents of theaflavin, thearubigins and theabrownin significantly correlated with the parameters of RGB and CMYK modes. The contents of chlorophyll (Chl) Chl-a and Chl-b had high correlation with the parameters of RGB and HSB modes. All the regression models established had the best goodness of fit, in the 95 % confidence intervals, the prediction error of them varied from −3.12 to 2.05 %. Thus, the primary pigments of SDT during post-fermentation could be excellently quantified by the image processing methods developed here.
doi_str_mv 10.1007/s00217-014-2219-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1544945615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3372237421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-be5f99d86c25c963ec84b8b8b57abfd74130a7cef41f6d159fc6f17ce3843f093</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOI7-AFcGXFfzbNqljE8YcDEz65CmN52OnaYmHcV_b0pFXEkWNxzOdy_nJMklwTcEY3kbMKZEppjwlFJSpPIomRHO8pSyXBz__qU8Tc5C2GEsiozwWfIZmn3fAtrDsHUVKnWACrkONXtdA-q9MxBC09VocAjCEOVhlOP0X6hv6j10A2rhA9qAnEWrxmwPukP32r-hNWhUHfxI9y4MqQU_2vXQuO48ObG6DXDxM-fJ5vFhvXhOl69PL4u7ZWqYZENagrBFUeWZocIUGQOT8zKPT0hd2kpywrCWBiwnNquIKKzJLIkCyzmzuGDz5HraG6O8H2ICtXMH38WTigjOCy4yIqKLTC7jXQgerPqJqAhWY79q6lfFftXYr5KRoRMT-jEi-D-b_4GuJshqp3Ttm6A2KxoNGBMqaJ6zb_cCiNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544945615</pqid></control><display><type>article</type><title>simple method based on image processing to estimate primary pigment levels of Sichuan Dark Tea during post-fermentation</title><source>Springer Nature - Complete Springer Journals</source><creator>Zou, Yao ; Qi, Guinian ; Chen, Shengxiang ; Tan, Liqiang ; Li, Wei ; Liu, Tingting</creator><creatorcontrib>Zou, Yao ; Qi, Guinian ; Chen, Shengxiang ; Tan, Liqiang ; Li, Wei ; Liu, Tingting</creatorcontrib><description>A new method quantifying the primary pigments of Sichuan Dark Tea (SDT) rapidly based on the image processing was established. The correlations between the color parameters obtained from SDT images by employing the scanner and Photoshop software and the primary pigment levels were analyzed, and the regression models based on these color parameters were established as well. The results showed that the contents of theaflavin, thearubigins and theabrownin significantly correlated with the parameters of RGB and CMYK modes. The contents of chlorophyll (Chl) Chl-a and Chl-b had high correlation with the parameters of RGB and HSB modes. All the regression models established had the best goodness of fit, in the 95 % confidence intervals, the prediction error of them varied from −3.12 to 2.05 %. Thus, the primary pigments of SDT during post-fermentation could be excellently quantified by the image processing methods developed here.</description><identifier>ISSN: 1438-2377</identifier><identifier>EISSN: 1438-2385</identifier><identifier>DOI: 10.1007/s00217-014-2219-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Agriculture ; Analytical Chemistry ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chlorophyll ; color ; computer software ; confidence interval ; Correlation analysis ; Fermentation ; Food ; Food Science ; Forestry ; image analysis ; Image processing systems ; Methods ; new methods ; Pigments ; prediction ; processing technology ; regression analysis ; Scanners ; Short Communication ; Software ; Studies ; Tea</subject><ispartof>European food research &amp; technology, 2014-08, Vol.239 (2), p.357-363</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-be5f99d86c25c963ec84b8b8b57abfd74130a7cef41f6d159fc6f17ce3843f093</citedby><cites>FETCH-LOGICAL-c373t-be5f99d86c25c963ec84b8b8b57abfd74130a7cef41f6d159fc6f17ce3843f093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00217-014-2219-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00217-014-2219-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zou, Yao</creatorcontrib><creatorcontrib>Qi, Guinian</creatorcontrib><creatorcontrib>Chen, Shengxiang</creatorcontrib><creatorcontrib>Tan, Liqiang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><title>simple method based on image processing to estimate primary pigment levels of Sichuan Dark Tea during post-fermentation</title><title>European food research &amp; technology</title><addtitle>Eur Food Res Technol</addtitle><description>A new method quantifying the primary pigments of Sichuan Dark Tea (SDT) rapidly based on the image processing was established. The correlations between the color parameters obtained from SDT images by employing the scanner and Photoshop software and the primary pigment levels were analyzed, and the regression models based on these color parameters were established as well. The results showed that the contents of theaflavin, thearubigins and theabrownin significantly correlated with the parameters of RGB and CMYK modes. The contents of chlorophyll (Chl) Chl-a and Chl-b had high correlation with the parameters of RGB and HSB modes. All the regression models established had the best goodness of fit, in the 95 % confidence intervals, the prediction error of them varied from −3.12 to 2.05 %. Thus, the primary pigments of SDT during post-fermentation could be excellently quantified by the image processing methods developed here.</description><subject>Agriculture</subject><subject>Analytical Chemistry</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chlorophyll</subject><subject>color</subject><subject>computer software</subject><subject>confidence interval</subject><subject>Correlation analysis</subject><subject>Fermentation</subject><subject>Food</subject><subject>Food Science</subject><subject>Forestry</subject><subject>image analysis</subject><subject>Image processing systems</subject><subject>Methods</subject><subject>new methods</subject><subject>Pigments</subject><subject>prediction</subject><subject>processing technology</subject><subject>regression analysis</subject><subject>Scanners</subject><subject>Short Communication</subject><subject>Software</subject><subject>Studies</subject><subject>Tea</subject><issn>1438-2377</issn><issn>1438-2385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYsoOI7-AFcGXFfzbNqljE8YcDEz65CmN52OnaYmHcV_b0pFXEkWNxzOdy_nJMklwTcEY3kbMKZEppjwlFJSpPIomRHO8pSyXBz__qU8Tc5C2GEsiozwWfIZmn3fAtrDsHUVKnWACrkONXtdA-q9MxBC09VocAjCEOVhlOP0X6hv6j10A2rhA9qAnEWrxmwPukP32r-hNWhUHfxI9y4MqQU_2vXQuO48ObG6DXDxM-fJ5vFhvXhOl69PL4u7ZWqYZENagrBFUeWZocIUGQOT8zKPT0hd2kpywrCWBiwnNquIKKzJLIkCyzmzuGDz5HraG6O8H2ICtXMH38WTigjOCy4yIqKLTC7jXQgerPqJqAhWY79q6lfFftXYr5KRoRMT-jEi-D-b_4GuJshqp3Ttm6A2KxoNGBMqaJ6zb_cCiNw</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Zou, Yao</creator><creator>Qi, Guinian</creator><creator>Chen, Shengxiang</creator><creator>Tan, Liqiang</creator><creator>Li, Wei</creator><creator>Liu, Tingting</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QR</scope><scope>7RQ</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>M7S</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140801</creationdate><title>simple method based on image processing to estimate primary pigment levels of Sichuan Dark Tea during post-fermentation</title><author>Zou, Yao ; Qi, Guinian ; Chen, Shengxiang ; Tan, Liqiang ; Li, Wei ; Liu, Tingting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-be5f99d86c25c963ec84b8b8b57abfd74130a7cef41f6d159fc6f17ce3843f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agriculture</topic><topic>Analytical Chemistry</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chlorophyll</topic><topic>color</topic><topic>computer software</topic><topic>confidence interval</topic><topic>Correlation analysis</topic><topic>Fermentation</topic><topic>Food</topic><topic>Food Science</topic><topic>Forestry</topic><topic>image analysis</topic><topic>Image processing systems</topic><topic>Methods</topic><topic>new methods</topic><topic>Pigments</topic><topic>prediction</topic><topic>processing technology</topic><topic>regression analysis</topic><topic>Scanners</topic><topic>Short Communication</topic><topic>Software</topic><topic>Studies</topic><topic>Tea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yao</creatorcontrib><creatorcontrib>Qi, Guinian</creatorcontrib><creatorcontrib>Chen, Shengxiang</creatorcontrib><creatorcontrib>Tan, Liqiang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Career &amp; Technical Education Database</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>European food research &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yao</au><au>Qi, Guinian</au><au>Chen, Shengxiang</au><au>Tan, Liqiang</au><au>Li, Wei</au><au>Liu, Tingting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>simple method based on image processing to estimate primary pigment levels of Sichuan Dark Tea during post-fermentation</atitle><jtitle>European food research &amp; technology</jtitle><stitle>Eur Food Res Technol</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>239</volume><issue>2</issue><spage>357</spage><epage>363</epage><pages>357-363</pages><issn>1438-2377</issn><eissn>1438-2385</eissn><abstract>A new method quantifying the primary pigments of Sichuan Dark Tea (SDT) rapidly based on the image processing was established. The correlations between the color parameters obtained from SDT images by employing the scanner and Photoshop software and the primary pigment levels were analyzed, and the regression models based on these color parameters were established as well. The results showed that the contents of theaflavin, thearubigins and theabrownin significantly correlated with the parameters of RGB and CMYK modes. The contents of chlorophyll (Chl) Chl-a and Chl-b had high correlation with the parameters of RGB and HSB modes. All the regression models established had the best goodness of fit, in the 95 % confidence intervals, the prediction error of them varied from −3.12 to 2.05 %. Thus, the primary pigments of SDT during post-fermentation could be excellently quantified by the image processing methods developed here.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00217-014-2219-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1438-2377
ispartof European food research & technology, 2014-08, Vol.239 (2), p.357-363
issn 1438-2377
1438-2385
language eng
recordid cdi_proquest_journals_1544945615
source Springer Nature - Complete Springer Journals
subjects Agriculture
Analytical Chemistry
Biotechnology
Chemistry
Chemistry and Materials Science
Chlorophyll
color
computer software
confidence interval
Correlation analysis
Fermentation
Food
Food Science
Forestry
image analysis
Image processing systems
Methods
new methods
Pigments
prediction
processing technology
regression analysis
Scanners
Short Communication
Software
Studies
Tea
title simple method based on image processing to estimate primary pigment levels of Sichuan Dark Tea during post-fermentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=simple%20method%20based%20on%20image%20processing%20to%20estimate%20primary%20pigment%20levels%20of%20Sichuan%20Dark%20Tea%20during%20post-fermentation&rft.jtitle=European%20food%20research%20&%20technology&rft.au=Zou,%20Yao&rft.date=2014-08-01&rft.volume=239&rft.issue=2&rft.spage=357&rft.epage=363&rft.pages=357-363&rft.issn=1438-2377&rft.eissn=1438-2385&rft_id=info:doi/10.1007/s00217-014-2219-7&rft_dat=%3Cproquest_cross%3E3372237421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1544945615&rft_id=info:pmid/&rfr_iscdi=true