Adsorption Mechanism of Acetylene Hydrogenation

First‐principles calculations are carried out to examine the adsorption of acetylene over the Pd (111) surface. A hydrogen adsorption system is initially investigated to confirm the reliability of the selected calculation method. Adsorption energies, Mulliken‐populations, overlap populations, charge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemistry 2014-07, Vol.32 (7), p.631-636
Hauptverfasser: Xie, Xuejia, Song, Xiuli, Dong, Wenyan, Liang, Zhenhai, Fan, Caimei, Han, Peide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 636
container_issue 7
container_start_page 631
container_title Chinese journal of chemistry
container_volume 32
creator Xie, Xuejia
Song, Xiuli
Dong, Wenyan
Liang, Zhenhai
Fan, Caimei
Han, Peide
description First‐principles calculations are carried out to examine the adsorption of acetylene over the Pd (111) surface. A hydrogen adsorption system is initially investigated to confirm the reliability of the selected calculation method. Adsorption energies, Mulliken‐populations, overlap populations, charge density, and projected density of states (PDOS) are then calculated in the optimised acetylene adsorption system. Results show that C2H2 molecule tends to adsorb through the threefold parallel‐bridge configuration that is computed to be the most stable. In this structure, the distance of the CH bond is calculated to be 1.09 Å, and the C‐C‐H bond angle is 128°. The distance of the CC bond in acetylene is 1.36 Å, increasing from 1.21 Å in the gas phase. Moreover, the CC bond overlap population decreases from 1.98 to 1.38, revealing that the carbon configuration in C2H2 rehybridises from sp to sp2 and beyond. The obtained results are compared with available experimental studies on acetylene hydrogenation on single‐metal surfaces. The PDOS study indicates that a carbonaceous layer may generate on the metal surface during acetylene adsorption. The carbonaceous layer can affect the adsorption and reaction of acetylene, thereby inactivating the metal surface. Our experiments also show that Pd exhibits high catalytic activity. First‐principles calculations are carried out to examine the adsorption of acetylene over the Pd (111) surface. A carbonaceous layer generates on the metal surface during acetylene adsorption, which would affect the adsorption and reaction of acetylene.
doi_str_mv 10.1002/cjoc.201400182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1543874097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3367559621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2372-29ec016114c850bd21f2a6f0f5caa1ef350edb0951090a2ea2481373db7242e23</originalsourceid><addsrcrecordid>eNqFkDFPwzAQRi0EEqWwMkdiTns-23EyVhFQoNAFRDfLdRxIaeNip4L8e1IFVWxMdzq9d5_0EXJJYUQBcGxWzowQKAegKR6RAU0ojyUk4rjbu2OcAF-ckrMQVh0vJSYDMp4UwfltU7k6erTmXddV2ESujCbGNu3a1jaatoV3b7bWe-icnJR6HezF7xySl5vr53waz-a3d_lkFhtkEmPMrIEun3KTClgWSEvUSQmlMFpTWzIBtlhCJihkoNFq5CllkhVLiRwtsiG56v9uvfvc2dColdv5uotUVHCWSg6Z7KhRTxnvQvC2VFtfbbRvFQW1L0XtS1GHUjoh64Wvam3bf2iV38_zv27cu1Vo7PfB1f5DJZJJoV6fbhU-yMVU8lTN2A8KlXNF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543874097</pqid></control><display><type>article</type><title>Adsorption Mechanism of Acetylene Hydrogenation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xie, Xuejia ; Song, Xiuli ; Dong, Wenyan ; Liang, Zhenhai ; Fan, Caimei ; Han, Peide</creator><creatorcontrib>Xie, Xuejia ; Song, Xiuli ; Dong, Wenyan ; Liang, Zhenhai ; Fan, Caimei ; Han, Peide</creatorcontrib><description>First‐principles calculations are carried out to examine the adsorption of acetylene over the Pd (111) surface. A hydrogen adsorption system is initially investigated to confirm the reliability of the selected calculation method. Adsorption energies, Mulliken‐populations, overlap populations, charge density, and projected density of states (PDOS) are then calculated in the optimised acetylene adsorption system. Results show that C2H2 molecule tends to adsorb through the threefold parallel‐bridge configuration that is computed to be the most stable. In this structure, the distance of the CH bond is calculated to be 1.09 Å, and the C‐C‐H bond angle is 128°. The distance of the CC bond in acetylene is 1.36 Å, increasing from 1.21 Å in the gas phase. Moreover, the CC bond overlap population decreases from 1.98 to 1.38, revealing that the carbon configuration in C2H2 rehybridises from sp to sp2 and beyond. The obtained results are compared with available experimental studies on acetylene hydrogenation on single‐metal surfaces. The PDOS study indicates that a carbonaceous layer may generate on the metal surface during acetylene adsorption. The carbonaceous layer can affect the adsorption and reaction of acetylene, thereby inactivating the metal surface. Our experiments also show that Pd exhibits high catalytic activity. First‐principles calculations are carried out to examine the adsorption of acetylene over the Pd (111) surface. A carbonaceous layer generates on the metal surface during acetylene adsorption, which would affect the adsorption and reaction of acetylene.</description><identifier>ISSN: 1001-604X</identifier><identifier>EISSN: 1614-7065</identifier><identifier>DOI: 10.1002/cjoc.201400182</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>acetylene ; adsorption ; first-principles ; palladium surface ; projected density of states</subject><ispartof>Chinese journal of chemistry, 2014-07, Vol.32 (7), p.631-636</ispartof><rights>Copyright © 2014 SIOC, CAS, Shanghai &amp; WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 SIOC, CAS, Shanghai &amp; WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2372-29ec016114c850bd21f2a6f0f5caa1ef350edb0951090a2ea2481373db7242e23</citedby><cites>FETCH-LOGICAL-c2372-29ec016114c850bd21f2a6f0f5caa1ef350edb0951090a2ea2481373db7242e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjoc.201400182$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjoc.201400182$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Xie, Xuejia</creatorcontrib><creatorcontrib>Song, Xiuli</creatorcontrib><creatorcontrib>Dong, Wenyan</creatorcontrib><creatorcontrib>Liang, Zhenhai</creatorcontrib><creatorcontrib>Fan, Caimei</creatorcontrib><creatorcontrib>Han, Peide</creatorcontrib><title>Adsorption Mechanism of Acetylene Hydrogenation</title><title>Chinese journal of chemistry</title><addtitle>Chin. J. Chem</addtitle><description>First‐principles calculations are carried out to examine the adsorption of acetylene over the Pd (111) surface. A hydrogen adsorption system is initially investigated to confirm the reliability of the selected calculation method. Adsorption energies, Mulliken‐populations, overlap populations, charge density, and projected density of states (PDOS) are then calculated in the optimised acetylene adsorption system. Results show that C2H2 molecule tends to adsorb through the threefold parallel‐bridge configuration that is computed to be the most stable. In this structure, the distance of the CH bond is calculated to be 1.09 Å, and the C‐C‐H bond angle is 128°. The distance of the CC bond in acetylene is 1.36 Å, increasing from 1.21 Å in the gas phase. Moreover, the CC bond overlap population decreases from 1.98 to 1.38, revealing that the carbon configuration in C2H2 rehybridises from sp to sp2 and beyond. The obtained results are compared with available experimental studies on acetylene hydrogenation on single‐metal surfaces. The PDOS study indicates that a carbonaceous layer may generate on the metal surface during acetylene adsorption. The carbonaceous layer can affect the adsorption and reaction of acetylene, thereby inactivating the metal surface. Our experiments also show that Pd exhibits high catalytic activity. First‐principles calculations are carried out to examine the adsorption of acetylene over the Pd (111) surface. A carbonaceous layer generates on the metal surface during acetylene adsorption, which would affect the adsorption and reaction of acetylene.</description><subject>acetylene</subject><subject>adsorption</subject><subject>first-principles</subject><subject>palladium surface</subject><subject>projected density of states</subject><issn>1001-604X</issn><issn>1614-7065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQRi0EEqWwMkdiTns-23EyVhFQoNAFRDfLdRxIaeNip4L8e1IFVWxMdzq9d5_0EXJJYUQBcGxWzowQKAegKR6RAU0ojyUk4rjbu2OcAF-ckrMQVh0vJSYDMp4UwfltU7k6erTmXddV2ESujCbGNu3a1jaatoV3b7bWe-icnJR6HezF7xySl5vr53waz-a3d_lkFhtkEmPMrIEun3KTClgWSEvUSQmlMFpTWzIBtlhCJihkoNFq5CllkhVLiRwtsiG56v9uvfvc2dColdv5uotUVHCWSg6Z7KhRTxnvQvC2VFtfbbRvFQW1L0XtS1GHUjoh64Wvam3bf2iV38_zv27cu1Vo7PfB1f5DJZJJoV6fbhU-yMVU8lTN2A8KlXNF</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Xie, Xuejia</creator><creator>Song, Xiuli</creator><creator>Dong, Wenyan</creator><creator>Liang, Zhenhai</creator><creator>Fan, Caimei</creator><creator>Han, Peide</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201407</creationdate><title>Adsorption Mechanism of Acetylene Hydrogenation</title><author>Xie, Xuejia ; Song, Xiuli ; Dong, Wenyan ; Liang, Zhenhai ; Fan, Caimei ; Han, Peide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2372-29ec016114c850bd21f2a6f0f5caa1ef350edb0951090a2ea2481373db7242e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>acetylene</topic><topic>adsorption</topic><topic>first-principles</topic><topic>palladium surface</topic><topic>projected density of states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xuejia</creatorcontrib><creatorcontrib>Song, Xiuli</creatorcontrib><creatorcontrib>Dong, Wenyan</creatorcontrib><creatorcontrib>Liang, Zhenhai</creatorcontrib><creatorcontrib>Fan, Caimei</creatorcontrib><creatorcontrib>Han, Peide</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Chinese journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xuejia</au><au>Song, Xiuli</au><au>Dong, Wenyan</au><au>Liang, Zhenhai</au><au>Fan, Caimei</au><au>Han, Peide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption Mechanism of Acetylene Hydrogenation</atitle><jtitle>Chinese journal of chemistry</jtitle><addtitle>Chin. J. Chem</addtitle><date>2014-07</date><risdate>2014</risdate><volume>32</volume><issue>7</issue><spage>631</spage><epage>636</epage><pages>631-636</pages><issn>1001-604X</issn><eissn>1614-7065</eissn><abstract>First‐principles calculations are carried out to examine the adsorption of acetylene over the Pd (111) surface. A hydrogen adsorption system is initially investigated to confirm the reliability of the selected calculation method. Adsorption energies, Mulliken‐populations, overlap populations, charge density, and projected density of states (PDOS) are then calculated in the optimised acetylene adsorption system. Results show that C2H2 molecule tends to adsorb through the threefold parallel‐bridge configuration that is computed to be the most stable. In this structure, the distance of the CH bond is calculated to be 1.09 Å, and the C‐C‐H bond angle is 128°. The distance of the CC bond in acetylene is 1.36 Å, increasing from 1.21 Å in the gas phase. Moreover, the CC bond overlap population decreases from 1.98 to 1.38, revealing that the carbon configuration in C2H2 rehybridises from sp to sp2 and beyond. The obtained results are compared with available experimental studies on acetylene hydrogenation on single‐metal surfaces. The PDOS study indicates that a carbonaceous layer may generate on the metal surface during acetylene adsorption. The carbonaceous layer can affect the adsorption and reaction of acetylene, thereby inactivating the metal surface. Our experiments also show that Pd exhibits high catalytic activity. First‐principles calculations are carried out to examine the adsorption of acetylene over the Pd (111) surface. A carbonaceous layer generates on the metal surface during acetylene adsorption, which would affect the adsorption and reaction of acetylene.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/cjoc.201400182</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-604X
ispartof Chinese journal of chemistry, 2014-07, Vol.32 (7), p.631-636
issn 1001-604X
1614-7065
language eng
recordid cdi_proquest_journals_1543874097
source Wiley Online Library Journals Frontfile Complete
subjects acetylene
adsorption
first-principles
palladium surface
projected density of states
title Adsorption Mechanism of Acetylene Hydrogenation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20Mechanism%20of%20Acetylene%20Hydrogenation&rft.jtitle=Chinese%20journal%20of%20chemistry&rft.au=Xie,%20Xuejia&rft.date=2014-07&rft.volume=32&rft.issue=7&rft.spage=631&rft.epage=636&rft.pages=631-636&rft.issn=1001-604X&rft.eissn=1614-7065&rft_id=info:doi/10.1002/cjoc.201400182&rft_dat=%3Cproquest_cross%3E3367559621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543874097&rft_id=info:pmid/&rfr_iscdi=true