Higher Dislocation Density of Arsenic-Doped HgCdTe Material
There is a well-known direct negative correlation between dislocation density and optoelectronic device performance. Reduction in detector noise associated with dislocations is an important target for improvement of mercury cadmium telluride (Hg 1− x Cd x Te)-based material in order to broaden its u...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2014-08, Vol.43 (8), p.3018-3024 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3024 |
---|---|
container_issue | 8 |
container_start_page | 3018 |
container_title | Journal of electronic materials |
container_volume | 43 |
creator | Vilela, M.F. Olsson, K.R. Rybnicek, K. Bangs, J.W. Jones, K.A. Harris, S.F. Smith, K.D. Lofgreen, D.D. |
description | There is a well-known direct negative correlation between dislocation density and optoelectronic device performance. Reduction in detector noise associated with dislocations is an important target for improvement of mercury cadmium telluride (Hg
1−
x
Cd
x
Te)-based material in order to broaden its use in the very long-wavelength infrared (VLWIR) regime. The lattice mismatch and differences in physical properties between substrates and the epitaxial Hg
1−
x
Cd
x
Te layers cause an increased threading dislocation density. As demonstrated in this work, the presence of arsenic impurities via
p
-type doping in molecular beam epitaxy (MBE)-grown epitaxial crystal structure increases the etch pit density (EPD) of Hg
1−
x
Cd
x
Te grown on Si substrates but not on CdZnTe substrates. This EPD increase is not observed in indium
n
-type-doped Hg
1−
x
Cd
x
Te grown on either Si or CdZnTe substrates. This trend is also seen in layers with different cadmium compositions. All of the EPD variations of the structures studied here are shown to be independent of the MBE machine used to grow the structure. The fundamentals of this higher EPD are not yet completely understood. |
doi_str_mv | 10.1007/s11664-014-3180-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1543610880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3366285871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-2f229efb3bfdab6256d067469d235de72be3027541bb50c9cd74545fdc811c993</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgiIUbDnWM7jpiqFihSEUuR2CzHf0qqkhQ7HfrtSZUKsTDdcO-9e_cj5BrhDgGK-4QoJaeAnOaogKoTMkLBc4pKfpySEeQSqWC5OCcXKa0BUKDCEXmY16tPH7NZnTatNV3dNtnMN6nu9lkbsklMvqktnbVb77L5auqWPns1nY-12VySs2A2yV8d55i8Pz0up3O6eHt-mU4W1HKUHWWBsdKHKq-CM5VkQjqQBZel6-s4X7DK58AKwbGqBNjSuoILLoKzCtGWZT4mN0PuNrbfO586vW53selP6sOLEkEp6FU4qGxsU4o-6G2sv0zcawR9YKQHRrpnpA-MtOo9t8dkk6zZhGgaW6dfI1MFgCyLXscGXepXzcrHPw3-Df8B3et0dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543610880</pqid></control><display><type>article</type><title>Higher Dislocation Density of Arsenic-Doped HgCdTe Material</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vilela, M.F. ; Olsson, K.R. ; Rybnicek, K. ; Bangs, J.W. ; Jones, K.A. ; Harris, S.F. ; Smith, K.D. ; Lofgreen, D.D.</creator><creatorcontrib>Vilela, M.F. ; Olsson, K.R. ; Rybnicek, K. ; Bangs, J.W. ; Jones, K.A. ; Harris, S.F. ; Smith, K.D. ; Lofgreen, D.D.</creatorcontrib><description>There is a well-known direct negative correlation between dislocation density and optoelectronic device performance. Reduction in detector noise associated with dislocations is an important target for improvement of mercury cadmium telluride (Hg
1−
x
Cd
x
Te)-based material in order to broaden its use in the very long-wavelength infrared (VLWIR) regime. The lattice mismatch and differences in physical properties between substrates and the epitaxial Hg
1−
x
Cd
x
Te layers cause an increased threading dislocation density. As demonstrated in this work, the presence of arsenic impurities via
p
-type doping in molecular beam epitaxy (MBE)-grown epitaxial crystal structure increases the etch pit density (EPD) of Hg
1−
x
Cd
x
Te grown on Si substrates but not on CdZnTe substrates. This EPD increase is not observed in indium
n
-type-doped Hg
1−
x
Cd
x
Te grown on either Si or CdZnTe substrates. This trend is also seen in layers with different cadmium compositions. All of the EPD variations of the structures studied here are shown to be independent of the MBE machine used to grow the structure. The fundamentals of this higher EPD are not yet completely understood.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-014-3180-8</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Arsenic ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Defects and impurities in crystals; microstructure ; Electronics ; Electronics and Microelectronics ; Exact sciences and technology ; Instrumentation ; Linear defects: dislocations, disclinations ; Materials Science ; Methods of deposition of films and coatings; film growth and epitaxy ; Molecular, atomic, ion, and chemical beam epitaxy ; Optical and Electronic Materials ; Optoelectronic devices ; Physics ; Semiconductor doping ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid State Physics ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Substrates</subject><ispartof>Journal of electronic materials, 2014-08, Vol.43 (8), p.3018-3024</ispartof><rights>TMS 2014</rights><rights>2015 INIST-CNRS</rights><rights>The Minerals, Metals & Materials Society 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-2f229efb3bfdab6256d067469d235de72be3027541bb50c9cd74545fdc811c993</citedby><cites>FETCH-LOGICAL-c416t-2f229efb3bfdab6256d067469d235de72be3027541bb50c9cd74545fdc811c993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-014-3180-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-014-3180-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28700697$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilela, M.F.</creatorcontrib><creatorcontrib>Olsson, K.R.</creatorcontrib><creatorcontrib>Rybnicek, K.</creatorcontrib><creatorcontrib>Bangs, J.W.</creatorcontrib><creatorcontrib>Jones, K.A.</creatorcontrib><creatorcontrib>Harris, S.F.</creatorcontrib><creatorcontrib>Smith, K.D.</creatorcontrib><creatorcontrib>Lofgreen, D.D.</creatorcontrib><title>Higher Dislocation Density of Arsenic-Doped HgCdTe Material</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>There is a well-known direct negative correlation between dislocation density and optoelectronic device performance. Reduction in detector noise associated with dislocations is an important target for improvement of mercury cadmium telluride (Hg
1−
x
Cd
x
Te)-based material in order to broaden its use in the very long-wavelength infrared (VLWIR) regime. The lattice mismatch and differences in physical properties between substrates and the epitaxial Hg
1−
x
Cd
x
Te layers cause an increased threading dislocation density. As demonstrated in this work, the presence of arsenic impurities via
p
-type doping in molecular beam epitaxy (MBE)-grown epitaxial crystal structure increases the etch pit density (EPD) of Hg
1−
x
Cd
x
Te grown on Si substrates but not on CdZnTe substrates. This EPD increase is not observed in indium
n
-type-doped Hg
1−
x
Cd
x
Te grown on either Si or CdZnTe substrates. This trend is also seen in layers with different cadmium compositions. All of the EPD variations of the structures studied here are shown to be independent of the MBE machine used to grow the structure. The fundamentals of this higher EPD are not yet completely understood.</description><subject>Applied sciences</subject><subject>Arsenic</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials Science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Molecular, atomic, ion, and chemical beam epitaxy</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronic devices</subject><subject>Physics</subject><subject>Semiconductor doping</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid State Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Substrates</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD9PwzAQxS0EEqXwAdgiIUbDnWM7jpiqFihSEUuR2CzHf0qqkhQ7HfrtSZUKsTDdcO-9e_cj5BrhDgGK-4QoJaeAnOaogKoTMkLBc4pKfpySEeQSqWC5OCcXKa0BUKDCEXmY16tPH7NZnTatNV3dNtnMN6nu9lkbsklMvqktnbVb77L5auqWPns1nY-12VySs2A2yV8d55i8Pz0up3O6eHt-mU4W1HKUHWWBsdKHKq-CM5VkQjqQBZel6-s4X7DK58AKwbGqBNjSuoILLoKzCtGWZT4mN0PuNrbfO586vW53selP6sOLEkEp6FU4qGxsU4o-6G2sv0zcawR9YKQHRrpnpA-MtOo9t8dkk6zZhGgaW6dfI1MFgCyLXscGXepXzcrHPw3-Df8B3et0dg</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Vilela, M.F.</creator><creator>Olsson, K.R.</creator><creator>Rybnicek, K.</creator><creator>Bangs, J.W.</creator><creator>Jones, K.A.</creator><creator>Harris, S.F.</creator><creator>Smith, K.D.</creator><creator>Lofgreen, D.D.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20140801</creationdate><title>Higher Dislocation Density of Arsenic-Doped HgCdTe Material</title><author>Vilela, M.F. ; Olsson, K.R. ; Rybnicek, K. ; Bangs, J.W. ; Jones, K.A. ; Harris, S.F. ; Smith, K.D. ; Lofgreen, D.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-2f229efb3bfdab6256d067469d235de72be3027541bb50c9cd74545fdc811c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Arsenic</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials Science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Molecular, atomic, ion, and chemical beam epitaxy</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronic devices</topic><topic>Physics</topic><topic>Semiconductor doping</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid State Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilela, M.F.</creatorcontrib><creatorcontrib>Olsson, K.R.</creatorcontrib><creatorcontrib>Rybnicek, K.</creatorcontrib><creatorcontrib>Bangs, J.W.</creatorcontrib><creatorcontrib>Jones, K.A.</creatorcontrib><creatorcontrib>Harris, S.F.</creatorcontrib><creatorcontrib>Smith, K.D.</creatorcontrib><creatorcontrib>Lofgreen, D.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilela, M.F.</au><au>Olsson, K.R.</au><au>Rybnicek, K.</au><au>Bangs, J.W.</au><au>Jones, K.A.</au><au>Harris, S.F.</au><au>Smith, K.D.</au><au>Lofgreen, D.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Dislocation Density of Arsenic-Doped HgCdTe Material</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>43</volume><issue>8</issue><spage>3018</spage><epage>3024</epage><pages>3018-3024</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>There is a well-known direct negative correlation between dislocation density and optoelectronic device performance. Reduction in detector noise associated with dislocations is an important target for improvement of mercury cadmium telluride (Hg
1−
x
Cd
x
Te)-based material in order to broaden its use in the very long-wavelength infrared (VLWIR) regime. The lattice mismatch and differences in physical properties between substrates and the epitaxial Hg
1−
x
Cd
x
Te layers cause an increased threading dislocation density. As demonstrated in this work, the presence of arsenic impurities via
p
-type doping in molecular beam epitaxy (MBE)-grown epitaxial crystal structure increases the etch pit density (EPD) of Hg
1−
x
Cd
x
Te grown on Si substrates but not on CdZnTe substrates. This EPD increase is not observed in indium
n
-type-doped Hg
1−
x
Cd
x
Te grown on either Si or CdZnTe substrates. This trend is also seen in layers with different cadmium compositions. All of the EPD variations of the structures studied here are shown to be independent of the MBE machine used to grow the structure. The fundamentals of this higher EPD are not yet completely understood.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-014-3180-8</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2014-08, Vol.43 (8), p.3018-3024 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_1543610880 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Arsenic Characterization and Evaluation of Materials Chemistry and Materials Science Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Defects and impurities in crystals microstructure Electronics Electronics and Microelectronics Exact sciences and technology Instrumentation Linear defects: dislocations, disclinations Materials Science Methods of deposition of films and coatings film growth and epitaxy Molecular, atomic, ion, and chemical beam epitaxy Optical and Electronic Materials Optoelectronic devices Physics Semiconductor doping Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Solid State Physics Structure of solids and liquids crystallography Structure of specific crystalline solids Substrates |
title | Higher Dislocation Density of Arsenic-Doped HgCdTe Material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Dislocation%20Density%20of%20Arsenic-Doped%20HgCdTe%20Material&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Vilela,%20M.F.&rft.date=2014-08-01&rft.volume=43&rft.issue=8&rft.spage=3018&rft.epage=3024&rft.pages=3018-3024&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-014-3180-8&rft_dat=%3Cproquest_cross%3E3366285871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543610880&rft_id=info:pmid/&rfr_iscdi=true |