mTORC1 controls the adaptive transition of quiescent stem cells from G^sub 0^ to G^sub Alert

A unique property of many adult stem cells is their ability to exist in a non-cycling, quiescent state. Although quiescence serves an essential role in preserving stem cell function until the stem cell is needed in tissue homeostasis or repair, defects in quiescence can lead to an impairment in tiss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2014-06, Vol.510 (7505), p.393
Hauptverfasser: Rodgers, Joseph T, King, Katherine Y, Brett, Jamie O, Cromie, Melinda J, Charville, Gregory W, Maguire, Katie K, Brunson, Christopher, Mastey, Namrata, Liu, Ling, Tsai, Chang-Ru, Goodell, Margaret A, Rando, Thomas A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7505
container_start_page 393
container_title Nature (London)
container_volume 510
creator Rodgers, Joseph T
King, Katherine Y
Brett, Jamie O
Cromie, Melinda J
Charville, Gregory W
Maguire, Katie K
Brunson, Christopher
Mastey, Namrata
Liu, Ling
Tsai, Chang-Ru
Goodell, Margaret A
Rando, Thomas A
description A unique property of many adult stem cells is their ability to exist in a non-cycling, quiescent state. Although quiescence serves an essential role in preserving stem cell function until the stem cell is needed in tissue homeostasis or repair, defects in quiescence can lead to an impairment in tissue function. The extent to which stem cells can regulate quiescence is unknown. Here we show that the stem cell quiescent state is composed of two distinct functional phases, G^sub 0^ and an 'alert' phase we term G^sub Alert^. Stem cells actively and reversibly transition between these phases in response to injury-induced systemic signals. Using genetic mouse models specific to muscle stem cells (or satellite cells), we show that mTORC1 activity is necessary and sufficient for the transition of satellite cells from G^sub 0^ into G^sub Alert^ and that signalling through the HGF receptor cMet is also necessary. We also identify G^sub 0^-to-G^sub Alert^ transitions in several populations of quiescent stem cells. Quiescent stem cells that transition into G^sub Alert^ possess enhanced tissue regenerative function. We propose that the transition of quiescent stem cells into G^sub Alert ^ functions as an 'alerting'mechanism, an adaptive response that positions stem cells to respond rapidly under conditions of injury and stress, priming them for cell cycle entry.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1540965037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3351589041</sourcerecordid><originalsourceid>FETCH-proquest_journals_15409650373</originalsourceid><addsrcrecordid>eNqNissKglAQQC9RkD3-YaC1MOazZUiPXRAtIzEbSdF79c7Y9-eiD2h1DpwzUY4XxJEbREk8VQ7iNnEx8aO5WjDXiBh6ceCoe3u7XFMPCqPFmoZB3gT5K--k-hCIzTVXUhkNpoR-qIgL0gIs1EJBzfiX1rRwevDwBHyAmJ_vG7KyUrMyb5jWPy7V5ni4pWe3s6YfiCWrzWD1mDIvDHAXhejH_n_XF3DJQ8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1540965037</pqid></control><display><type>article</type><title>mTORC1 controls the adaptive transition of quiescent stem cells from G^sub 0^ to G^sub Alert</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Rodgers, Joseph T ; King, Katherine Y ; Brett, Jamie O ; Cromie, Melinda J ; Charville, Gregory W ; Maguire, Katie K ; Brunson, Christopher ; Mastey, Namrata ; Liu, Ling ; Tsai, Chang-Ru ; Goodell, Margaret A ; Rando, Thomas A</creator><creatorcontrib>Rodgers, Joseph T ; King, Katherine Y ; Brett, Jamie O ; Cromie, Melinda J ; Charville, Gregory W ; Maguire, Katie K ; Brunson, Christopher ; Mastey, Namrata ; Liu, Ling ; Tsai, Chang-Ru ; Goodell, Margaret A ; Rando, Thomas A</creatorcontrib><description>A unique property of many adult stem cells is their ability to exist in a non-cycling, quiescent state. Although quiescence serves an essential role in preserving stem cell function until the stem cell is needed in tissue homeostasis or repair, defects in quiescence can lead to an impairment in tissue function. The extent to which stem cells can regulate quiescence is unknown. Here we show that the stem cell quiescent state is composed of two distinct functional phases, G^sub 0^ and an 'alert' phase we term G^sub Alert^. Stem cells actively and reversibly transition between these phases in response to injury-induced systemic signals. Using genetic mouse models specific to muscle stem cells (or satellite cells), we show that mTORC1 activity is necessary and sufficient for the transition of satellite cells from G^sub 0^ into G^sub Alert^ and that signalling through the HGF receptor cMet is also necessary. We also identify G^sub 0^-to-G^sub Alert^ transitions in several populations of quiescent stem cells. Quiescent stem cells that transition into G^sub Alert^ possess enhanced tissue regenerative function. We propose that the transition of quiescent stem cells into G^sub Alert ^ functions as an 'alerting'mechanism, an adaptive response that positions stem cells to respond rapidly under conditions of injury and stress, priming them for cell cycle entry.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Cell cycle ; Cell division ; Cell growth ; Experiments ; Genotype &amp; phenotype ; Stem cells</subject><ispartof>Nature (London), 2014-06, Vol.510 (7505), p.393</ispartof><rights>Copyright Nature Publishing Group Jun 19, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Rodgers, Joseph T</creatorcontrib><creatorcontrib>King, Katherine Y</creatorcontrib><creatorcontrib>Brett, Jamie O</creatorcontrib><creatorcontrib>Cromie, Melinda J</creatorcontrib><creatorcontrib>Charville, Gregory W</creatorcontrib><creatorcontrib>Maguire, Katie K</creatorcontrib><creatorcontrib>Brunson, Christopher</creatorcontrib><creatorcontrib>Mastey, Namrata</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Tsai, Chang-Ru</creatorcontrib><creatorcontrib>Goodell, Margaret A</creatorcontrib><creatorcontrib>Rando, Thomas A</creatorcontrib><title>mTORC1 controls the adaptive transition of quiescent stem cells from G^sub 0^ to G^sub Alert</title><title>Nature (London)</title><description>A unique property of many adult stem cells is their ability to exist in a non-cycling, quiescent state. Although quiescence serves an essential role in preserving stem cell function until the stem cell is needed in tissue homeostasis or repair, defects in quiescence can lead to an impairment in tissue function. The extent to which stem cells can regulate quiescence is unknown. Here we show that the stem cell quiescent state is composed of two distinct functional phases, G^sub 0^ and an 'alert' phase we term G^sub Alert^. Stem cells actively and reversibly transition between these phases in response to injury-induced systemic signals. Using genetic mouse models specific to muscle stem cells (or satellite cells), we show that mTORC1 activity is necessary and sufficient for the transition of satellite cells from G^sub 0^ into G^sub Alert^ and that signalling through the HGF receptor cMet is also necessary. We also identify G^sub 0^-to-G^sub Alert^ transitions in several populations of quiescent stem cells. Quiescent stem cells that transition into G^sub Alert^ possess enhanced tissue regenerative function. We propose that the transition of quiescent stem cells into G^sub Alert ^ functions as an 'alerting'mechanism, an adaptive response that positions stem cells to respond rapidly under conditions of injury and stress, priming them for cell cycle entry.</description><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cell growth</subject><subject>Experiments</subject><subject>Genotype &amp; phenotype</subject><subject>Stem cells</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNissKglAQQC9RkD3-YaC1MOazZUiPXRAtIzEbSdF79c7Y9-eiD2h1DpwzUY4XxJEbREk8VQ7iNnEx8aO5WjDXiBh6ceCoe3u7XFMPCqPFmoZB3gT5K--k-hCIzTVXUhkNpoR-qIgL0gIs1EJBzfiX1rRwevDwBHyAmJ_vG7KyUrMyb5jWPy7V5ni4pWe3s6YfiCWrzWD1mDIvDHAXhejH_n_XF3DJQ8k</recordid><startdate>20140619</startdate><enddate>20140619</enddate><creator>Rodgers, Joseph T</creator><creator>King, Katherine Y</creator><creator>Brett, Jamie O</creator><creator>Cromie, Melinda J</creator><creator>Charville, Gregory W</creator><creator>Maguire, Katie K</creator><creator>Brunson, Christopher</creator><creator>Mastey, Namrata</creator><creator>Liu, Ling</creator><creator>Tsai, Chang-Ru</creator><creator>Goodell, Margaret A</creator><creator>Rando, Thomas A</creator><general>Nature Publishing Group</general><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>20140619</creationdate><title>mTORC1 controls the adaptive transition of quiescent stem cells from G^sub 0^ to G^sub Alert</title><author>Rodgers, Joseph T ; King, Katherine Y ; Brett, Jamie O ; Cromie, Melinda J ; Charville, Gregory W ; Maguire, Katie K ; Brunson, Christopher ; Mastey, Namrata ; Liu, Ling ; Tsai, Chang-Ru ; Goodell, Margaret A ; Rando, Thomas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_15409650373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cell growth</topic><topic>Experiments</topic><topic>Genotype &amp; phenotype</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodgers, Joseph T</creatorcontrib><creatorcontrib>King, Katherine Y</creatorcontrib><creatorcontrib>Brett, Jamie O</creatorcontrib><creatorcontrib>Cromie, Melinda J</creatorcontrib><creatorcontrib>Charville, Gregory W</creatorcontrib><creatorcontrib>Maguire, Katie K</creatorcontrib><creatorcontrib>Brunson, Christopher</creatorcontrib><creatorcontrib>Mastey, Namrata</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Tsai, Chang-Ru</creatorcontrib><creatorcontrib>Goodell, Margaret A</creatorcontrib><creatorcontrib>Rando, Thomas A</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodgers, Joseph T</au><au>King, Katherine Y</au><au>Brett, Jamie O</au><au>Cromie, Melinda J</au><au>Charville, Gregory W</au><au>Maguire, Katie K</au><au>Brunson, Christopher</au><au>Mastey, Namrata</au><au>Liu, Ling</au><au>Tsai, Chang-Ru</au><au>Goodell, Margaret A</au><au>Rando, Thomas A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC1 controls the adaptive transition of quiescent stem cells from G^sub 0^ to G^sub Alert</atitle><jtitle>Nature (London)</jtitle><date>2014-06-19</date><risdate>2014</risdate><volume>510</volume><issue>7505</issue><spage>393</spage><pages>393-</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>A unique property of many adult stem cells is their ability to exist in a non-cycling, quiescent state. Although quiescence serves an essential role in preserving stem cell function until the stem cell is needed in tissue homeostasis or repair, defects in quiescence can lead to an impairment in tissue function. The extent to which stem cells can regulate quiescence is unknown. Here we show that the stem cell quiescent state is composed of two distinct functional phases, G^sub 0^ and an 'alert' phase we term G^sub Alert^. Stem cells actively and reversibly transition between these phases in response to injury-induced systemic signals. Using genetic mouse models specific to muscle stem cells (or satellite cells), we show that mTORC1 activity is necessary and sufficient for the transition of satellite cells from G^sub 0^ into G^sub Alert^ and that signalling through the HGF receptor cMet is also necessary. We also identify G^sub 0^-to-G^sub Alert^ transitions in several populations of quiescent stem cells. Quiescent stem cells that transition into G^sub Alert^ possess enhanced tissue regenerative function. We propose that the transition of quiescent stem cells into G^sub Alert ^ functions as an 'alerting'mechanism, an adaptive response that positions stem cells to respond rapidly under conditions of injury and stress, priming them for cell cycle entry.</abstract><cop>London</cop><pub>Nature Publishing Group</pub></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2014-06, Vol.510 (7505), p.393
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_journals_1540965037
source Nature; Alma/SFX Local Collection
subjects Cell cycle
Cell division
Cell growth
Experiments
Genotype & phenotype
Stem cells
title mTORC1 controls the adaptive transition of quiescent stem cells from G^sub 0^ to G^sub Alert
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC1%20controls%20the%20adaptive%20transition%20of%20quiescent%20stem%20cells%20from%20G%5Esub%200%5E%20to%20G%5Esub%20Alert&rft.jtitle=Nature%20(London)&rft.au=Rodgers,%20Joseph%20T&rft.date=2014-06-19&rft.volume=510&rft.issue=7505&rft.spage=393&rft.pages=393-&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/&rft_dat=%3Cproquest%3E3351589041%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1540965037&rft_id=info:pmid/&rfr_iscdi=true