"Popularity Effect" in User-Generated Content: Evidence from Online Product Reviews

Online product reviews are increasingly important for consumer decisions, yet we still know little about how reviews are generated in the first place. In an effort to gather more reviews, many websites encourage user interactions such as allowing one user to subscribe to another. Do these interactio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information systems research 2014-06, Vol.25 (2), p.222-238
Hauptverfasser: Goes, Paulo B., Lin, Mingfeng, Yeung, Ching-man Au
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue 2
container_start_page 222
container_title Information systems research
container_volume 25
creator Goes, Paulo B.
Lin, Mingfeng
Yeung, Ching-man Au
description Online product reviews are increasingly important for consumer decisions, yet we still know little about how reviews are generated in the first place. In an effort to gather more reviews, many websites encourage user interactions such as allowing one user to subscribe to another. Do these interactions actually facilitate the generation of product reviews? More importantly, what kind of reviews do such interactions induce? We study these questions using data from one of the largest product review websites where users can subscribe to one another. By applying both panel data and a flexible matching method, we find that as users become more popular, they produce more reviews and more objective reviews; however, their numeric ratings also systematically change and become more negative and more varied. Such trade-off has not been previously documented and has important implications for both product review and other user-generated content websites.
doi_str_mv 10.1287/isre.2013.0512
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1540457979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A374528075</galeid><jstor_id>24700171</jstor_id><sourcerecordid>A374528075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-34d38d811b1b9a250e985df44fcfb833915ff87d45a129352230ab5c764c27103</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxQdRsLa--iaE9tXZ5nMz07eybD-g0KL2OWQyN2uWmWRNMi39781YaRUWJHATwu-c3NxTVZ8IXhDayFOXIiwoJmyBBaFvqgMi6LIWgi3fljPmspalvK8-pLTFGDPWsoPq2_Fd2E2Dji4_obW1YPIxch7dJ4j1JXiIOkOPVsFn8PkMrR9cD94AsjGM6NYPzgO6i6GfTEZf4cHBYzqq3lk9JPj4Zz-s7i_W31dX9c3t5fXq_KY2AuNcM96zpm8I6UjXaiowtI3oLefW2K4p7RFhbSN7LjShLROUMqw7YeSSGyoJZofVybPvLoafE6SstmGKvjypiOCYC9nK9pXa6AGU8zbkqM3oklHnTHJBGyxFoeo91Ob3AIbgwbpy_Q-_2MOX1cPozF7Bl78E3ZTK4FIpyW1-5LTRU0p7_U0MqQRr1S66UccnRbCa41Zz3GqOW81xF8HnZ8E25RBfaMolxkSS1w_OvcYx_c_vF3QesmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1540457979</pqid></control><display><type>article</type><title>"Popularity Effect" in User-Generated Content: Evidence from Online Product Reviews</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><creator>Goes, Paulo B. ; Lin, Mingfeng ; Yeung, Ching-man Au</creator><creatorcontrib>Goes, Paulo B. ; Lin, Mingfeng ; Yeung, Ching-man Au</creatorcontrib><description>Online product reviews are increasingly important for consumer decisions, yet we still know little about how reviews are generated in the first place. In an effort to gather more reviews, many websites encourage user interactions such as allowing one user to subscribe to another. Do these interactions actually facilitate the generation of product reviews? More importantly, what kind of reviews do such interactions induce? We study these questions using data from one of the largest product review websites where users can subscribe to one another. By applying both panel data and a flexible matching method, we find that as users become more popular, they produce more reviews and more objective reviews; however, their numeric ratings also systematically change and become more negative and more varied. Such trade-off has not been previously documented and has important implications for both product review and other user-generated content websites.</description><identifier>ISSN: 1047-7047</identifier><identifier>EISSN: 1526-5536</identifier><identifier>DOI: 10.1287/isre.2013.0512</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Audiences ; Behavior ; Consumers ; Customer feedback ; Data mining ; Decision making ; Hypotheses ; Influence ; Information services ; Information services industry ; matching ; online community ; Online social networks ; opinion leader ; Popularity ; Product reviews ; Ratings &amp; rankings ; Services ; social media ; Social networks ; Studies ; text mining ; Trust ; User generated content ; Virtual communities ; Websites ; Writers</subject><ispartof>Information systems research, 2014-06, Vol.25 (2), p.222-238</ispartof><rights>2014 INFORMS</rights><rights>COPYRIGHT 2014 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-34d38d811b1b9a250e985df44fcfb833915ff87d45a129352230ab5c764c27103</citedby><cites>FETCH-LOGICAL-c500t-34d38d811b1b9a250e985df44fcfb833915ff87d45a129352230ab5c764c27103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24700171$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/isre.2013.0512$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27901,27902,57992,58225,62589</link.rule.ids></links><search><creatorcontrib>Goes, Paulo B.</creatorcontrib><creatorcontrib>Lin, Mingfeng</creatorcontrib><creatorcontrib>Yeung, Ching-man Au</creatorcontrib><title>"Popularity Effect" in User-Generated Content: Evidence from Online Product Reviews</title><title>Information systems research</title><description>Online product reviews are increasingly important for consumer decisions, yet we still know little about how reviews are generated in the first place. In an effort to gather more reviews, many websites encourage user interactions such as allowing one user to subscribe to another. Do these interactions actually facilitate the generation of product reviews? More importantly, what kind of reviews do such interactions induce? We study these questions using data from one of the largest product review websites where users can subscribe to one another. By applying both panel data and a flexible matching method, we find that as users become more popular, they produce more reviews and more objective reviews; however, their numeric ratings also systematically change and become more negative and more varied. Such trade-off has not been previously documented and has important implications for both product review and other user-generated content websites.</description><subject>Audiences</subject><subject>Behavior</subject><subject>Consumers</subject><subject>Customer feedback</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Hypotheses</subject><subject>Influence</subject><subject>Information services</subject><subject>Information services industry</subject><subject>matching</subject><subject>online community</subject><subject>Online social networks</subject><subject>opinion leader</subject><subject>Popularity</subject><subject>Product reviews</subject><subject>Ratings &amp; rankings</subject><subject>Services</subject><subject>social media</subject><subject>Social networks</subject><subject>Studies</subject><subject>text mining</subject><subject>Trust</subject><subject>User generated content</subject><subject>Virtual communities</subject><subject>Websites</subject><subject>Writers</subject><issn>1047-7047</issn><issn>1526-5536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkd1rFDEUxQdRsLa--iaE9tXZ5nMz07eybD-g0KL2OWQyN2uWmWRNMi39781YaRUWJHATwu-c3NxTVZ8IXhDayFOXIiwoJmyBBaFvqgMi6LIWgi3fljPmspalvK8-pLTFGDPWsoPq2_Fd2E2Dji4_obW1YPIxch7dJ4j1JXiIOkOPVsFn8PkMrR9cD94AsjGM6NYPzgO6i6GfTEZf4cHBYzqq3lk9JPj4Zz-s7i_W31dX9c3t5fXq_KY2AuNcM96zpm8I6UjXaiowtI3oLefW2K4p7RFhbSN7LjShLROUMqw7YeSSGyoJZofVybPvLoafE6SstmGKvjypiOCYC9nK9pXa6AGU8zbkqM3oklHnTHJBGyxFoeo91Ob3AIbgwbpy_Q-_2MOX1cPozF7Bl78E3ZTK4FIpyW1-5LTRU0p7_U0MqQRr1S66UccnRbCa41Zz3GqOW81xF8HnZ8E25RBfaMolxkSS1w_OvcYx_c_vF3QesmM</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Goes, Paulo B.</creator><creator>Lin, Mingfeng</creator><creator>Yeung, Ching-man Au</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>JQ2</scope></search><sort><creationdate>20140601</creationdate><title>"Popularity Effect" in User-Generated Content: Evidence from Online Product Reviews</title><author>Goes, Paulo B. ; Lin, Mingfeng ; Yeung, Ching-man Au</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-34d38d811b1b9a250e985df44fcfb833915ff87d45a129352230ab5c764c27103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Audiences</topic><topic>Behavior</topic><topic>Consumers</topic><topic>Customer feedback</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Hypotheses</topic><topic>Influence</topic><topic>Information services</topic><topic>Information services industry</topic><topic>matching</topic><topic>online community</topic><topic>Online social networks</topic><topic>opinion leader</topic><topic>Popularity</topic><topic>Product reviews</topic><topic>Ratings &amp; rankings</topic><topic>Services</topic><topic>social media</topic><topic>Social networks</topic><topic>Studies</topic><topic>text mining</topic><topic>Trust</topic><topic>User generated content</topic><topic>Virtual communities</topic><topic>Websites</topic><topic>Writers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goes, Paulo B.</creatorcontrib><creatorcontrib>Lin, Mingfeng</creatorcontrib><creatorcontrib>Yeung, Ching-man Au</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Information systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goes, Paulo B.</au><au>Lin, Mingfeng</au><au>Yeung, Ching-man Au</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>"Popularity Effect" in User-Generated Content: Evidence from Online Product Reviews</atitle><jtitle>Information systems research</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>25</volume><issue>2</issue><spage>222</spage><epage>238</epage><pages>222-238</pages><issn>1047-7047</issn><eissn>1526-5536</eissn><abstract>Online product reviews are increasingly important for consumer decisions, yet we still know little about how reviews are generated in the first place. In an effort to gather more reviews, many websites encourage user interactions such as allowing one user to subscribe to another. Do these interactions actually facilitate the generation of product reviews? More importantly, what kind of reviews do such interactions induce? We study these questions using data from one of the largest product review websites where users can subscribe to one another. By applying both panel data and a flexible matching method, we find that as users become more popular, they produce more reviews and more objective reviews; however, their numeric ratings also systematically change and become more negative and more varied. Such trade-off has not been previously documented and has important implications for both product review and other user-generated content websites.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/isre.2013.0512</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-7047
ispartof Information systems research, 2014-06, Vol.25 (2), p.222-238
issn 1047-7047
1526-5536
language eng
recordid cdi_proquest_journals_1540457979
source Jstor Complete Legacy; INFORMS PubsOnLine; EBSCOhost Business Source Complete
subjects Audiences
Behavior
Consumers
Customer feedback
Data mining
Decision making
Hypotheses
Influence
Information services
Information services industry
matching
online community
Online social networks
opinion leader
Popularity
Product reviews
Ratings & rankings
Services
social media
Social networks
Studies
text mining
Trust
User generated content
Virtual communities
Websites
Writers
title "Popularity Effect" in User-Generated Content: Evidence from Online Product Reviews
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%22Popularity%20Effect%22%20in%20User-Generated%20Content:%20Evidence%20from%20Online%20Product%20Reviews&rft.jtitle=Information%20systems%20research&rft.au=Goes,%20Paulo%20B.&rft.date=2014-06-01&rft.volume=25&rft.issue=2&rft.spage=222&rft.epage=238&rft.pages=222-238&rft.issn=1047-7047&rft.eissn=1526-5536&rft_id=info:doi/10.1287/isre.2013.0512&rft_dat=%3Cgale_proqu%3EA374528075%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1540457979&rft_id=info:pmid/&rft_galeid=A374528075&rft_jstor_id=24700171&rfr_iscdi=true