Application of High Intensity Ultrasound to a Zero-trans Shortening During Temperature Cycling at Different Cooling Rates

The objective of this work was to evaluate the effect of high intensity ultrasound (HIU) on the physical properties of a commercial shortening crystallized at a constant temperature and during temperature cycling at two different cooling rates (0.5 and 1 °C/min). Different ultrasound power levels an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Oil Chemists' Society 2014-07, Vol.91 (7), p.1155-1169
Hauptverfasser: Ye, Y, Tan, C. Y, Kim, D. A, Martini, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1169
container_issue 7
container_start_page 1155
container_title Journal of the American Oil Chemists' Society
container_volume 91
creator Ye, Y
Tan, C. Y
Kim, D. A
Martini, S
description The objective of this work was to evaluate the effect of high intensity ultrasound (HIU) on the physical properties of a commercial shortening crystallized at a constant temperature and during temperature cycling at two different cooling rates (0.5 and 1 °C/min). Different ultrasound power levels and different durations were evaluated during crystallization at a constant temperature and the best conditions were used to evaluate the effect of HIU during temperature cycling. The physical properties tested were crystal microstructure, viscoelasticity, and melting profile. Results show that HIU is more efficient at changing crystal microstructure when used at 20 °C using a 1/2″ tip. No difference was found on the microstructure of the crystals formed when different durations of ultrasound exposure were tested. A significant increase (p < 0.05) was observed in the storage modulus (G′) of the lipid exposed to temperature fluctuations with the use of HIU. The G′ values increased from 662.6 ± 176.8 Pa (no HIU applied) to 3,365.5 ± 426.4 Pa (with HIU applied, 0.5 °C/min) and from 354.4 ± 49.7 Pa (no HIU applied) to 1,249.0 ± 19.8 Pa (with HIU applied, 1 °C/min).
doi_str_mv 10.1007/s11746-014-2458-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1539735655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3348315841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-6bb3f7d64d75d4738da6c9a9d84c349091c8f9f6ee8431038bd6690121da52cf3</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVoIdskPyCnCnp2q7EsWT4u3ra7EFjIZqHkIrS2tFFwLFeSCf73leMcempPo3m8b554CN0C-QqElN8CQFnwjECR5QUTGb9AK2DpUVEKH9CKEEIzksOvS_QphOe0CpqzFZrWw9DZRkXreuwM3trzE971UffBxgkfu-hVcGPf4uiwwo_auyxJfcCHJ-eTzfZnvBn9PB70y6C9iqPXuJ6abtZUxBtrjPa6j7h27k28V1GHa_TRqC7om_d5hY4_vj_U2-xu_3NXr--yhgrBMn46UVO2vGhL1hYlFa3iTaWqVhQNLSpSQSNMZbjWoqBAqDi1nFcEcmgVyxtDr9CX5e7g3e9Rhyif3ej7FCmB0aqkjDOWXLC4Gu9C8NrIwdsX5ScJRM4Ny6VhmRqWc8OSJ6ZcmFfb6en_gFzv6wPAW1q-kGGYm9P-rz_9I-7zAhnlpDp7G-TxkCcDIVDmDCj9A8Y4mKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1539735655</pqid></control><display><type>article</type><title>Application of High Intensity Ultrasound to a Zero-trans Shortening During Temperature Cycling at Different Cooling Rates</title><source>Wiley Online Library Journals Frontfile Complete</source><source>SpringerLink Journals</source><creator>Ye, Y ; Tan, C. Y ; Kim, D. A ; Martini, S</creator><creatorcontrib>Ye, Y ; Tan, C. Y ; Kim, D. A ; Martini, S</creatorcontrib><description>The objective of this work was to evaluate the effect of high intensity ultrasound (HIU) on the physical properties of a commercial shortening crystallized at a constant temperature and during temperature cycling at two different cooling rates (0.5 and 1 °C/min). Different ultrasound power levels and different durations were evaluated during crystallization at a constant temperature and the best conditions were used to evaluate the effect of HIU during temperature cycling. The physical properties tested were crystal microstructure, viscoelasticity, and melting profile. Results show that HIU is more efficient at changing crystal microstructure when used at 20 °C using a 1/2″ tip. No difference was found on the microstructure of the crystals formed when different durations of ultrasound exposure were tested. A significant increase (p &lt; 0.05) was observed in the storage modulus (G′) of the lipid exposed to temperature fluctuations with the use of HIU. The G′ values increased from 662.6 ± 176.8 Pa (no HIU applied) to 3,365.5 ± 426.4 Pa (with HIU applied, 0.5 °C/min) and from 354.4 ± 49.7 Pa (no HIU applied) to 1,249.0 ± 19.8 Pa (with HIU applied, 1 °C/min).</description><identifier>ISSN: 0003-021X</identifier><identifier>EISSN: 1558-9331</identifier><identifier>DOI: 10.1007/s11746-014-2458-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Agriculture ; Biomaterials ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Cooling ; Crystallization ; Crystals ; Food Science ; High intensity ultrasound ; Industrial Chemistry/Chemical Engineering ; melting ; Microstructure ; Original Paper ; Physical properties ; storage modulus ; temperature ; Temperature cycling ; Temperature effects ; Ultrasonic technology ; ultrasonics ; Viscoelasticity</subject><ispartof>Journal of the American Oil Chemists' Society, 2014-07, Vol.91 (7), p.1155-1169</ispartof><rights>AOCS 2014</rights><rights>2014 American Oil Chemists' Society (AOCS)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-6bb3f7d64d75d4738da6c9a9d84c349091c8f9f6ee8431038bd6690121da52cf3</citedby><cites>FETCH-LOGICAL-c3885-6bb3f7d64d75d4738da6c9a9d84c349091c8f9f6ee8431038bd6690121da52cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11746-014-2458-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11746-014-2458-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,41469,42538,45555,45556,51300</link.rule.ids></links><search><creatorcontrib>Ye, Y</creatorcontrib><creatorcontrib>Tan, C. Y</creatorcontrib><creatorcontrib>Kim, D. A</creatorcontrib><creatorcontrib>Martini, S</creatorcontrib><title>Application of High Intensity Ultrasound to a Zero-trans Shortening During Temperature Cycling at Different Cooling Rates</title><title>Journal of the American Oil Chemists' Society</title><addtitle>J Am Oil Chem Soc</addtitle><description>The objective of this work was to evaluate the effect of high intensity ultrasound (HIU) on the physical properties of a commercial shortening crystallized at a constant temperature and during temperature cycling at two different cooling rates (0.5 and 1 °C/min). Different ultrasound power levels and different durations were evaluated during crystallization at a constant temperature and the best conditions were used to evaluate the effect of HIU during temperature cycling. The physical properties tested were crystal microstructure, viscoelasticity, and melting profile. Results show that HIU is more efficient at changing crystal microstructure when used at 20 °C using a 1/2″ tip. No difference was found on the microstructure of the crystals formed when different durations of ultrasound exposure were tested. A significant increase (p &lt; 0.05) was observed in the storage modulus (G′) of the lipid exposed to temperature fluctuations with the use of HIU. The G′ values increased from 662.6 ± 176.8 Pa (no HIU applied) to 3,365.5 ± 426.4 Pa (with HIU applied, 0.5 °C/min) and from 354.4 ± 49.7 Pa (no HIU applied) to 1,249.0 ± 19.8 Pa (with HIU applied, 1 °C/min).</description><subject>Agriculture</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cooling</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Food Science</subject><subject>High intensity ultrasound</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>melting</subject><subject>Microstructure</subject><subject>Original Paper</subject><subject>Physical properties</subject><subject>storage modulus</subject><subject>temperature</subject><subject>Temperature cycling</subject><subject>Temperature effects</subject><subject>Ultrasonic technology</subject><subject>ultrasonics</subject><subject>Viscoelasticity</subject><issn>0003-021X</issn><issn>1558-9331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkEFr3DAQhUVoIdskPyCnCnp2q7EsWT4u3ra7EFjIZqHkIrS2tFFwLFeSCf73leMcempPo3m8b554CN0C-QqElN8CQFnwjECR5QUTGb9AK2DpUVEKH9CKEEIzksOvS_QphOe0CpqzFZrWw9DZRkXreuwM3trzE971UffBxgkfu-hVcGPf4uiwwo_auyxJfcCHJ-eTzfZnvBn9PB70y6C9iqPXuJ6abtZUxBtrjPa6j7h27k28V1GHa_TRqC7om_d5hY4_vj_U2-xu_3NXr--yhgrBMn46UVO2vGhL1hYlFa3iTaWqVhQNLSpSQSNMZbjWoqBAqDi1nFcEcmgVyxtDr9CX5e7g3e9Rhyif3ej7FCmB0aqkjDOWXLC4Gu9C8NrIwdsX5ScJRM4Ny6VhmRqWc8OSJ6ZcmFfb6en_gFzv6wPAW1q-kGGYm9P-rz_9I-7zAhnlpDp7G-TxkCcDIVDmDCj9A8Y4mKw</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Ye, Y</creator><creator>Tan, C. Y</creator><creator>Kim, D. A</creator><creator>Martini, S</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201407</creationdate><title>Application of High Intensity Ultrasound to a Zero-trans Shortening During Temperature Cycling at Different Cooling Rates</title><author>Ye, Y ; Tan, C. Y ; Kim, D. A ; Martini, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-6bb3f7d64d75d4738da6c9a9d84c349091c8f9f6ee8431038bd6690121da52cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agriculture</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cooling</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Food Science</topic><topic>High intensity ultrasound</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>melting</topic><topic>Microstructure</topic><topic>Original Paper</topic><topic>Physical properties</topic><topic>storage modulus</topic><topic>temperature</topic><topic>Temperature cycling</topic><topic>Temperature effects</topic><topic>Ultrasonic technology</topic><topic>ultrasonics</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Y</creatorcontrib><creatorcontrib>Tan, C. Y</creatorcontrib><creatorcontrib>Kim, D. A</creatorcontrib><creatorcontrib>Martini, S</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the American Oil Chemists' Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Y</au><au>Tan, C. Y</au><au>Kim, D. A</au><au>Martini, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of High Intensity Ultrasound to a Zero-trans Shortening During Temperature Cycling at Different Cooling Rates</atitle><jtitle>Journal of the American Oil Chemists' Society</jtitle><stitle>J Am Oil Chem Soc</stitle><date>2014-07</date><risdate>2014</risdate><volume>91</volume><issue>7</issue><spage>1155</spage><epage>1169</epage><pages>1155-1169</pages><issn>0003-021X</issn><eissn>1558-9331</eissn><abstract>The objective of this work was to evaluate the effect of high intensity ultrasound (HIU) on the physical properties of a commercial shortening crystallized at a constant temperature and during temperature cycling at two different cooling rates (0.5 and 1 °C/min). Different ultrasound power levels and different durations were evaluated during crystallization at a constant temperature and the best conditions were used to evaluate the effect of HIU during temperature cycling. The physical properties tested were crystal microstructure, viscoelasticity, and melting profile. Results show that HIU is more efficient at changing crystal microstructure when used at 20 °C using a 1/2″ tip. No difference was found on the microstructure of the crystals formed when different durations of ultrasound exposure were tested. A significant increase (p &lt; 0.05) was observed in the storage modulus (G′) of the lipid exposed to temperature fluctuations with the use of HIU. The G′ values increased from 662.6 ± 176.8 Pa (no HIU applied) to 3,365.5 ± 426.4 Pa (with HIU applied, 0.5 °C/min) and from 354.4 ± 49.7 Pa (no HIU applied) to 1,249.0 ± 19.8 Pa (with HIU applied, 1 °C/min).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11746-014-2458-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-021X
ispartof Journal of the American Oil Chemists' Society, 2014-07, Vol.91 (7), p.1155-1169
issn 0003-021X
1558-9331
language eng
recordid cdi_proquest_journals_1539735655
source Wiley Online Library Journals Frontfile Complete; SpringerLink Journals
subjects Agriculture
Biomaterials
Biotechnology
Chemistry
Chemistry and Materials Science
Cooling
Crystallization
Crystals
Food Science
High intensity ultrasound
Industrial Chemistry/Chemical Engineering
melting
Microstructure
Original Paper
Physical properties
storage modulus
temperature
Temperature cycling
Temperature effects
Ultrasonic technology
ultrasonics
Viscoelasticity
title Application of High Intensity Ultrasound to a Zero-trans Shortening During Temperature Cycling at Different Cooling Rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20High%20Intensity%20Ultrasound%20to%20a%20Zero-trans%20Shortening%20During%20Temperature%20Cycling%20at%20Different%20Cooling%20Rates&rft.jtitle=Journal%20of%20the%20American%20Oil%20Chemists'%20Society&rft.au=Ye,%20Y&rft.date=2014-07&rft.volume=91&rft.issue=7&rft.spage=1155&rft.epage=1169&rft.pages=1155-1169&rft.issn=0003-021X&rft.eissn=1558-9331&rft_id=info:doi/10.1007/s11746-014-2458-6&rft_dat=%3Cproquest_cross%3E3348315841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1539735655&rft_id=info:pmid/&rfr_iscdi=true