Crystallography, Group Theory, Etymology, and ‘Pataphysics
Duparc discusses the relations between crystallograpy, group theory, mainly from an historical and etymological point of view. Crystallography existed long before 1912. It started when the French mineralogist Rene-Just Hauy designed geometrical models with tentative microscopic physical units in ord...
Gespeichert in:
Veröffentlicht in: | The Mathematical intelligencer 2014-06, Vol.36 (2), p.54-61 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | 2 |
container_start_page | 54 |
container_title | The Mathematical intelligencer |
container_volume | 36 |
creator | Hardouin Duparc, Olivier B. M. |
description | Duparc discusses the relations between crystallograpy, group theory, mainly from an historical and etymological point of view. Crystallography existed long before 1912. It started when the French mineralogist Rene-Just Hauy designed geometrical models with tentative microscopic physical units in order to generate a global explanation of the various observations of the external shapes of crystals available in his time (18th century), what one may call a physico-mathematical theory. Maybe more than physics and chemistry, these early advances involved developments in geometrical symmetry considerations. Some of them have been done independently of equivalent developments made in algebraic structures dealing with the roots of polynomial equations. |
doi_str_mv | 10.1007/s00283-013-9426-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1536140983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3336018111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-76762280f0f9abb5370c51d0e7d2cd39b163173af73a53db1ba1106a8d7b5bc83</originalsourceid><addsrcrecordid>eNp1kM1KxEAMxwdRcF19AG8Fr44mTTvTghdZ1lVY0MN6Hmb6sR_s7tSZ9tCbj-Hz-SROqQcvBkIS8vsn8GfsGuEOAeS9B4gz4oDE8yQWHE7YBDMhuEwwOWUToIS4yHM6Zxfe7yBEIsSEPcxc71u939u1082mv40WznZNtNpU1oVp3vYHG5ah1ccy-v78etPtAPpt4S_ZWa33vrr6rVP2_jRfzZ758nXxMntc8oJQtFwKKeI4gxrqXBuTkoQixRIqWcZFSblBQShJ1yFTKg0ajQhCZ6U0qSkymrKb8W7j7EdX-VbtbOeO4aXClAQmkGcUKBypwlnvXVWrxm0P2vUKQQ0mqdEkFUxSg0kKgiYeNT6wx3Xl_lz-V_QDbP1pkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1536140983</pqid></control><display><type>article</type><title>Crystallography, Group Theory, Etymology, and ‘Pataphysics</title><source>SpringerLink Journals</source><creator>Hardouin Duparc, Olivier B. M.</creator><creatorcontrib>Hardouin Duparc, Olivier B. M.</creatorcontrib><description>Duparc discusses the relations between crystallograpy, group theory, mainly from an historical and etymological point of view. Crystallography existed long before 1912. It started when the French mineralogist Rene-Just Hauy designed geometrical models with tentative microscopic physical units in order to generate a global explanation of the various observations of the external shapes of crystals available in his time (18th century), what one may call a physico-mathematical theory. Maybe more than physics and chemistry, these early advances involved developments in geometrical symmetry considerations. Some of them have been done independently of equivalent developments made in algebraic structures dealing with the roots of polynomial equations.</description><identifier>ISSN: 0343-6993</identifier><identifier>EISSN: 1866-7414</identifier><identifier>DOI: 10.1007/s00283-013-9426-0</identifier><identifier>CODEN: MAINDC</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebraic group theory ; Crystallography ; Etymology ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical and Computational Physics ; Original Article ; Simulation ; Theoretical</subject><ispartof>The Mathematical intelligencer, 2014-06, Vol.36 (2), p.54-61</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Copyright Springer Science & Business Media Summer 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-76762280f0f9abb5370c51d0e7d2cd39b163173af73a53db1ba1106a8d7b5bc83</citedby><cites>FETCH-LOGICAL-c316t-76762280f0f9abb5370c51d0e7d2cd39b163173af73a53db1ba1106a8d7b5bc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00283-013-9426-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00283-013-9426-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hardouin Duparc, Olivier B. M.</creatorcontrib><title>Crystallography, Group Theory, Etymology, and ‘Pataphysics</title><title>The Mathematical intelligencer</title><addtitle>Math Intelligencer</addtitle><description>Duparc discusses the relations between crystallograpy, group theory, mainly from an historical and etymological point of view. Crystallography existed long before 1912. It started when the French mineralogist Rene-Just Hauy designed geometrical models with tentative microscopic physical units in order to generate a global explanation of the various observations of the external shapes of crystals available in his time (18th century), what one may call a physico-mathematical theory. Maybe more than physics and chemistry, these early advances involved developments in geometrical symmetry considerations. Some of them have been done independently of equivalent developments made in algebraic structures dealing with the roots of polynomial equations.</description><subject>Algebraic group theory</subject><subject>Crystallography</subject><subject>Etymology</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical and Computational Physics</subject><subject>Original Article</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0343-6993</issn><issn>1866-7414</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxEAMxwdRcF19AG8Fr44mTTvTghdZ1lVY0MN6Hmb6sR_s7tSZ9tCbj-Hz-SROqQcvBkIS8vsn8GfsGuEOAeS9B4gz4oDE8yQWHE7YBDMhuEwwOWUToIS4yHM6Zxfe7yBEIsSEPcxc71u939u1082mv40WznZNtNpU1oVp3vYHG5ah1ccy-v78etPtAPpt4S_ZWa33vrr6rVP2_jRfzZ758nXxMntc8oJQtFwKKeI4gxrqXBuTkoQixRIqWcZFSblBQShJ1yFTKg0ajQhCZ6U0qSkymrKb8W7j7EdX-VbtbOeO4aXClAQmkGcUKBypwlnvXVWrxm0P2vUKQQ0mqdEkFUxSg0kKgiYeNT6wx3Xl_lz-V_QDbP1pkA</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Hardouin Duparc, Olivier B. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20140601</creationdate><title>Crystallography, Group Theory, Etymology, and ‘Pataphysics</title><author>Hardouin Duparc, Olivier B. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-76762280f0f9abb5370c51d0e7d2cd39b163173af73a53db1ba1106a8d7b5bc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebraic group theory</topic><topic>Crystallography</topic><topic>Etymology</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical and Computational Physics</topic><topic>Original Article</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hardouin Duparc, Olivier B. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Mathematical intelligencer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hardouin Duparc, Olivier B. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallography, Group Theory, Etymology, and ‘Pataphysics</atitle><jtitle>The Mathematical intelligencer</jtitle><stitle>Math Intelligencer</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>36</volume><issue>2</issue><spage>54</spage><epage>61</epage><pages>54-61</pages><issn>0343-6993</issn><eissn>1866-7414</eissn><coden>MAINDC</coden><abstract>Duparc discusses the relations between crystallograpy, group theory, mainly from an historical and etymological point of view. Crystallography existed long before 1912. It started when the French mineralogist Rene-Just Hauy designed geometrical models with tentative microscopic physical units in order to generate a global explanation of the various observations of the external shapes of crystals available in his time (18th century), what one may call a physico-mathematical theory. Maybe more than physics and chemistry, these early advances involved developments in geometrical symmetry considerations. Some of them have been done independently of equivalent developments made in algebraic structures dealing with the roots of polynomial equations.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s00283-013-9426-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0343-6993 |
ispartof | The Mathematical intelligencer, 2014-06, Vol.36 (2), p.54-61 |
issn | 0343-6993 1866-7414 |
language | eng |
recordid | cdi_proquest_journals_1536140983 |
source | SpringerLink Journals |
subjects | Algebraic group theory Crystallography Etymology Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical and Computational Physics Original Article Simulation Theoretical |
title | Crystallography, Group Theory, Etymology, and ‘Pataphysics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallography,%20Group%20Theory,%20Etymology,%20and%20%E2%80%98Pataphysics&rft.jtitle=The%20Mathematical%20intelligencer&rft.au=Hardouin%20Duparc,%20Olivier%20B.%20M.&rft.date=2014-06-01&rft.volume=36&rft.issue=2&rft.spage=54&rft.epage=61&rft.pages=54-61&rft.issn=0343-6993&rft.eissn=1866-7414&rft.coden=MAINDC&rft_id=info:doi/10.1007/s00283-013-9426-0&rft_dat=%3Cproquest_cross%3E3336018111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1536140983&rft_id=info:pmid/&rfr_iscdi=true |