On cumulative nonlinear acoustic waveform distortions from high-speed jets

A model is proposed for predicting the presence of cumulative nonlinear distortions in the acoustic waveforms produced by high-speed jet flows. The model relies on the conventional definition of the acoustic shock formation distance and employs an effective Gol’dberg number $\Lambda $ for diverging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2014-06, Vol.749, p.331-366
Hauptverfasser: Baars, W. J., Tinney, C. E., Wochner, M. S., Hamilton, M. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue
container_start_page 331
container_title Journal of fluid mechanics
container_volume 749
creator Baars, W. J.
Tinney, C. E.
Wochner, M. S.
Hamilton, M. F.
description A model is proposed for predicting the presence of cumulative nonlinear distortions in the acoustic waveforms produced by high-speed jet flows. The model relies on the conventional definition of the acoustic shock formation distance and employs an effective Gol’dberg number $\Lambda $ for diverging acoustic waves. The latter properly accounts for spherical spreading, whereas the classical Gol’dberg number $\Gamma $ is restricted to plane wave applications. Scaling laws are then derived to account for the effects imposed by jet exit conditions of practical interest and includes Mach number, temperature ratio, Strouhal number and an absolute observer distance relative to a broadband Gaussian source. Surveys of the acoustic pressure produced by a laboratory-scale, shock-free and unheated Mach 3 jet are used to support findings of the model. Acoustic waveforms are acquired on a two-dimensional grid extending out to 145 nozzle diameters from the jet exit plane. Various statistical metrics are employed to examine the degree of local and cumulative nonlinearity in the measured waveforms and their temporal derivatives. This includes a wave steepening factor (WSF), skewness, kurtosis and the normalized quadrature spectral density. The analysed data are shown to collapse reasonably well along rays emanating from the post-potential-core region of the jet. An application of the generalized Burgers equation is used to demonstrate the effect of cumulative nonlinear distortion on an arbitrary acoustic waveform produced by a high-convective-Mach-number supersonic jet. It is advocated that cumulative nonlinear distortion effects during far-field sound propagation are too subtle in this range-restricted environment and over the region covered, which may be true for other laboratory-scale jet noise facilities.
doi_str_mv 10.1017/jfm.2014.228
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1534355608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2014_228</cupid><sourcerecordid>3329842051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-9f987f046d99feb9dc54043681963438ad8cfe7f24978b8d70f6e4d14f6eee723</originalsourceid><addsrcrecordid>eNptkEtLAzEURoMoWKs7f8CAuHPGvGaSLKX4pNCNrkOaR5uhM6nJTMV_b0qLuHB1N-eeDw4A1whWCCJ237quwhDRCmN-AiaINqJkDa1PwQRCjEuEMDwHFym1ECICBZuAt0Vf6LEbN2rwO1v0od_43qpYKB3GNHhdfKmddSF2hfFpCHHwoU-Fi6Er1n61LtPWWlO0dkiX4MypTbJXxzsFH0-P77OXcr54fp09zEtNBB9K4QRnDtLGCOHsUhhdU0hJw5FoCCVcGa6dZQ5TwfiSGwZdY6lBNB9rGSZTcHPwbmP4HG0aZBvG2OdJiepsqOsG8kzdHSgdQ0rROrmNvlPxWyIo97VkriX3tWSulfHbo1QlrTYuql779PuDeU1qQprMVUet6pbRm5X9s_6f-AcWY3mY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534355608</pqid></control><display><type>article</type><title>On cumulative nonlinear acoustic waveform distortions from high-speed jets</title><source>Cambridge University Press Journals Complete</source><creator>Baars, W. J. ; Tinney, C. E. ; Wochner, M. S. ; Hamilton, M. F.</creator><creatorcontrib>Baars, W. J. ; Tinney, C. E. ; Wochner, M. S. ; Hamilton, M. F.</creatorcontrib><description>A model is proposed for predicting the presence of cumulative nonlinear distortions in the acoustic waveforms produced by high-speed jet flows. The model relies on the conventional definition of the acoustic shock formation distance and employs an effective Gol’dberg number $\Lambda $ for diverging acoustic waves. The latter properly accounts for spherical spreading, whereas the classical Gol’dberg number $\Gamma $ is restricted to plane wave applications. Scaling laws are then derived to account for the effects imposed by jet exit conditions of practical interest and includes Mach number, temperature ratio, Strouhal number and an absolute observer distance relative to a broadband Gaussian source. Surveys of the acoustic pressure produced by a laboratory-scale, shock-free and unheated Mach 3 jet are used to support findings of the model. Acoustic waveforms are acquired on a two-dimensional grid extending out to 145 nozzle diameters from the jet exit plane. Various statistical metrics are employed to examine the degree of local and cumulative nonlinearity in the measured waveforms and their temporal derivatives. This includes a wave steepening factor (WSF), skewness, kurtosis and the normalized quadrature spectral density. The analysed data are shown to collapse reasonably well along rays emanating from the post-potential-core region of the jet. An application of the generalized Burgers equation is used to demonstrate the effect of cumulative nonlinear distortion on an arbitrary acoustic waveform produced by a high-convective-Mach-number supersonic jet. It is advocated that cumulative nonlinear distortion effects during far-field sound propagation are too subtle in this range-restricted environment and over the region covered, which may be true for other laboratory-scale jet noise facilities.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2014.228</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Acoustics ; Aeroacoustics, atmospheric sound ; Exact sciences and technology ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Noise (turbulence generated) ; Nonlinear acoustics, macrosonics ; Physics ; Turbulent flows, convection, and heat transfer ; Waveform analysis</subject><ispartof>Journal of fluid mechanics, 2014-06, Vol.749, p.331-366</ispartof><rights>2014 Cambridge University Press</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-9f987f046d99feb9dc54043681963438ad8cfe7f24978b8d70f6e4d14f6eee723</citedby><cites>FETCH-LOGICAL-c398t-9f987f046d99feb9dc54043681963438ad8cfe7f24978b8d70f6e4d14f6eee723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112014002286/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28535336$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baars, W. J.</creatorcontrib><creatorcontrib>Tinney, C. E.</creatorcontrib><creatorcontrib>Wochner, M. S.</creatorcontrib><creatorcontrib>Hamilton, M. F.</creatorcontrib><title>On cumulative nonlinear acoustic waveform distortions from high-speed jets</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A model is proposed for predicting the presence of cumulative nonlinear distortions in the acoustic waveforms produced by high-speed jet flows. The model relies on the conventional definition of the acoustic shock formation distance and employs an effective Gol’dberg number $\Lambda $ for diverging acoustic waves. The latter properly accounts for spherical spreading, whereas the classical Gol’dberg number $\Gamma $ is restricted to plane wave applications. Scaling laws are then derived to account for the effects imposed by jet exit conditions of practical interest and includes Mach number, temperature ratio, Strouhal number and an absolute observer distance relative to a broadband Gaussian source. Surveys of the acoustic pressure produced by a laboratory-scale, shock-free and unheated Mach 3 jet are used to support findings of the model. Acoustic waveforms are acquired on a two-dimensional grid extending out to 145 nozzle diameters from the jet exit plane. Various statistical metrics are employed to examine the degree of local and cumulative nonlinearity in the measured waveforms and their temporal derivatives. This includes a wave steepening factor (WSF), skewness, kurtosis and the normalized quadrature spectral density. The analysed data are shown to collapse reasonably well along rays emanating from the post-potential-core region of the jet. An application of the generalized Burgers equation is used to demonstrate the effect of cumulative nonlinear distortion on an arbitrary acoustic waveform produced by a high-convective-Mach-number supersonic jet. It is advocated that cumulative nonlinear distortion effects during far-field sound propagation are too subtle in this range-restricted environment and over the region covered, which may be true for other laboratory-scale jet noise facilities.</description><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Noise (turbulence generated)</subject><subject>Nonlinear acoustics, macrosonics</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Waveform analysis</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEtLAzEURoMoWKs7f8CAuHPGvGaSLKX4pNCNrkOaR5uhM6nJTMV_b0qLuHB1N-eeDw4A1whWCCJ237quwhDRCmN-AiaINqJkDa1PwQRCjEuEMDwHFym1ECICBZuAt0Vf6LEbN2rwO1v0od_43qpYKB3GNHhdfKmddSF2hfFpCHHwoU-Fi6Er1n61LtPWWlO0dkiX4MypTbJXxzsFH0-P77OXcr54fp09zEtNBB9K4QRnDtLGCOHsUhhdU0hJw5FoCCVcGa6dZQ5TwfiSGwZdY6lBNB9rGSZTcHPwbmP4HG0aZBvG2OdJiepsqOsG8kzdHSgdQ0rROrmNvlPxWyIo97VkriX3tWSulfHbo1QlrTYuql779PuDeU1qQprMVUet6pbRm5X9s_6f-AcWY3mY</recordid><startdate>20140625</startdate><enddate>20140625</enddate><creator>Baars, W. J.</creator><creator>Tinney, C. E.</creator><creator>Wochner, M. S.</creator><creator>Hamilton, M. F.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20140625</creationdate><title>On cumulative nonlinear acoustic waveform distortions from high-speed jets</title><author>Baars, W. J. ; Tinney, C. E. ; Wochner, M. S. ; Hamilton, M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-9f987f046d99feb9dc54043681963438ad8cfe7f24978b8d70f6e4d14f6eee723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Noise (turbulence generated)</topic><topic>Nonlinear acoustics, macrosonics</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Waveform analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baars, W. J.</creatorcontrib><creatorcontrib>Tinney, C. E.</creatorcontrib><creatorcontrib>Wochner, M. S.</creatorcontrib><creatorcontrib>Hamilton, M. F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baars, W. J.</au><au>Tinney, C. E.</au><au>Wochner, M. S.</au><au>Hamilton, M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On cumulative nonlinear acoustic waveform distortions from high-speed jets</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2014-06-25</date><risdate>2014</risdate><volume>749</volume><spage>331</spage><epage>366</epage><pages>331-366</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A model is proposed for predicting the presence of cumulative nonlinear distortions in the acoustic waveforms produced by high-speed jet flows. The model relies on the conventional definition of the acoustic shock formation distance and employs an effective Gol’dberg number $\Lambda $ for diverging acoustic waves. The latter properly accounts for spherical spreading, whereas the classical Gol’dberg number $\Gamma $ is restricted to plane wave applications. Scaling laws are then derived to account for the effects imposed by jet exit conditions of practical interest and includes Mach number, temperature ratio, Strouhal number and an absolute observer distance relative to a broadband Gaussian source. Surveys of the acoustic pressure produced by a laboratory-scale, shock-free and unheated Mach 3 jet are used to support findings of the model. Acoustic waveforms are acquired on a two-dimensional grid extending out to 145 nozzle diameters from the jet exit plane. Various statistical metrics are employed to examine the degree of local and cumulative nonlinearity in the measured waveforms and their temporal derivatives. This includes a wave steepening factor (WSF), skewness, kurtosis and the normalized quadrature spectral density. The analysed data are shown to collapse reasonably well along rays emanating from the post-potential-core region of the jet. An application of the generalized Burgers equation is used to demonstrate the effect of cumulative nonlinear distortion on an arbitrary acoustic waveform produced by a high-convective-Mach-number supersonic jet. It is advocated that cumulative nonlinear distortion effects during far-field sound propagation are too subtle in this range-restricted environment and over the region covered, which may be true for other laboratory-scale jet noise facilities.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2014.228</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2014-06, Vol.749, p.331-366
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1534355608
source Cambridge University Press Journals Complete
subjects Acoustics
Aeroacoustics, atmospheric sound
Exact sciences and technology
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Noise (turbulence generated)
Nonlinear acoustics, macrosonics
Physics
Turbulent flows, convection, and heat transfer
Waveform analysis
title On cumulative nonlinear acoustic waveform distortions from high-speed jets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20cumulative%20nonlinear%20acoustic%20waveform%20distortions%20from%20high-speed%20jets&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Baars,%20W.%C2%A0J.&rft.date=2014-06-25&rft.volume=749&rft.spage=331&rft.epage=366&rft.pages=331-366&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2014.228&rft_dat=%3Cproquest_cross%3E3329842051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534355608&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2014_228&rfr_iscdi=true