Structure Results for Multiple Tilings in 3D
We study multiple tilings of 3-dimensional Euclidean space by a convex body. In a multiple tiling, a convex body P is translated with a discrete multiset Λ in such a way that each point of R d gets covered exactly k times, except perhaps the translated copies of the boundary of P . It is known that...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2013-12, Vol.50 (4), p.1033-1050 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1050 |
---|---|
container_issue | 4 |
container_start_page | 1033 |
container_title | Discrete & computational geometry |
container_volume | 50 |
creator | Gravin, Nick Kolountzakis, Mihail N. Robins, Sinai Shiryaev, Dmitry |
description | We study multiple tilings of 3-dimensional Euclidean space by a convex body. In a multiple tiling, a convex body
P
is translated with a discrete multiset
Λ
in such a way that each point of
R
d
gets covered exactly
k
times, except perhaps the translated copies of the boundary of
P
. It is known that all possible multiple tilers in
R
3
are zonotopes. In
R
2
it was known by the work of Kolountzakis (Discrete Comput Geom 23(4):537–553,
2000
) that, unless
P
is a parallelogram, the multiset of translation vectors
Λ
must be a finite union of translated lattices (also known as quasi periodic sets). In that work (Kolountzakis, Discrete Comput Geom 23(4):537–553,
2000
) the author asked whether the same quasi-periodic structure on the translation vectors would be true in
R
3
. Here we prove that this conclusion is indeed true for
R
3
. Namely, we show that if
P
is a convex multiple tiler in
R
3
, with a discrete multiset
Λ
of translation vectors, then
Λ
has to be a finite union of translated lattices, unless
P
belongs to a special class of zonotopes. This exceptional class consists of two-flat zonotopes
P
, defined by the Minkowski sum of two 2-dimensional symmetric polygons in
R
3
, one of which may degenerate into a single line segment. It turns out that rational two-flat zonotopes admit a multiple tiling with an aperiodic (nonquasi-periodic) set of translation vectors
Λ
. We note that it may be quite difficult to offer a visualization of these 3-dimensional non-quasi-periodic tilings, and that we discovered them by using Fourier methods. |
doi_str_mv | 10.1007/s00454-013-9548-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1530215983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3318725221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e1709a809077070f79bb40df1789f430c530f9f216eaac1fbdb3c28be42b31d43</originalsourceid><addsrcrecordid>eNp1kLFOwzAQQC0EEqXwAWyRWDHcxU5tj6hQQCpCgjJbsWNXqUIS7GTg73EUBhamu-G9O-kRcolwgwDiNgLwglNARlXBJWVHZIGc5RQ458dkASgULZhYnZKzGA-QcAVyQa7fhzDaYQwue3NxbIaY-S5kL2mr-8Zlu7qp233M6jZj9-fkxJdNdBe_c0k-Ng-79RPdvj4-r--21LJCDdShAFVKUCAECPBCGcOh8iik8pyBLRh45XNcubK06E1lmM2lcTw3DCvOluRqvtuH7mt0cdCHbgxteqkxuTkWSrJE4UzZ0MUYnNd9qD_L8K0R9BRFz1F0iqKnKHpy8tmJiW33Lvy5_K_0A2v2Ymo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530215983</pqid></control><display><type>article</type><title>Structure Results for Multiple Tilings in 3D</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gravin, Nick ; Kolountzakis, Mihail N. ; Robins, Sinai ; Shiryaev, Dmitry</creator><creatorcontrib>Gravin, Nick ; Kolountzakis, Mihail N. ; Robins, Sinai ; Shiryaev, Dmitry</creatorcontrib><description>We study multiple tilings of 3-dimensional Euclidean space by a convex body. In a multiple tiling, a convex body
P
is translated with a discrete multiset
Λ
in such a way that each point of
R
d
gets covered exactly
k
times, except perhaps the translated copies of the boundary of
P
. It is known that all possible multiple tilers in
R
3
are zonotopes. In
R
2
it was known by the work of Kolountzakis (Discrete Comput Geom 23(4):537–553,
2000
) that, unless
P
is a parallelogram, the multiset of translation vectors
Λ
must be a finite union of translated lattices (also known as quasi periodic sets). In that work (Kolountzakis, Discrete Comput Geom 23(4):537–553,
2000
) the author asked whether the same quasi-periodic structure on the translation vectors would be true in
R
3
. Here we prove that this conclusion is indeed true for
R
3
. Namely, we show that if
P
is a convex multiple tiler in
R
3
, with a discrete multiset
Λ
of translation vectors, then
Λ
has to be a finite union of translated lattices, unless
P
belongs to a special class of zonotopes. This exceptional class consists of two-flat zonotopes
P
, defined by the Minkowski sum of two 2-dimensional symmetric polygons in
R
3
, one of which may degenerate into a single line segment. It turns out that rational two-flat zonotopes admit a multiple tiling with an aperiodic (nonquasi-periodic) set of translation vectors
Λ
. We note that it may be quite difficult to offer a visualization of these 3-dimensional non-quasi-periodic tilings, and that we discovered them by using Fourier methods.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-013-9548-3</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Combinatorics ; Computational Mathematics and Numerical Analysis ; Euclidean space ; Fourier transforms ; Lattice theory ; Mathematics ; Mathematics and Statistics</subject><ispartof>Discrete & computational geometry, 2013-12, Vol.50 (4), p.1033-1050</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e1709a809077070f79bb40df1789f430c530f9f216eaac1fbdb3c28be42b31d43</citedby><cites>FETCH-LOGICAL-c359t-e1709a809077070f79bb40df1789f430c530f9f216eaac1fbdb3c28be42b31d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-013-9548-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-013-9548-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Gravin, Nick</creatorcontrib><creatorcontrib>Kolountzakis, Mihail N.</creatorcontrib><creatorcontrib>Robins, Sinai</creatorcontrib><creatorcontrib>Shiryaev, Dmitry</creatorcontrib><title>Structure Results for Multiple Tilings in 3D</title><title>Discrete & computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>We study multiple tilings of 3-dimensional Euclidean space by a convex body. In a multiple tiling, a convex body
P
is translated with a discrete multiset
Λ
in such a way that each point of
R
d
gets covered exactly
k
times, except perhaps the translated copies of the boundary of
P
. It is known that all possible multiple tilers in
R
3
are zonotopes. In
R
2
it was known by the work of Kolountzakis (Discrete Comput Geom 23(4):537–553,
2000
) that, unless
P
is a parallelogram, the multiset of translation vectors
Λ
must be a finite union of translated lattices (also known as quasi periodic sets). In that work (Kolountzakis, Discrete Comput Geom 23(4):537–553,
2000
) the author asked whether the same quasi-periodic structure on the translation vectors would be true in
R
3
. Here we prove that this conclusion is indeed true for
R
3
. Namely, we show that if
P
is a convex multiple tiler in
R
3
, with a discrete multiset
Λ
of translation vectors, then
Λ
has to be a finite union of translated lattices, unless
P
belongs to a special class of zonotopes. This exceptional class consists of two-flat zonotopes
P
, defined by the Minkowski sum of two 2-dimensional symmetric polygons in
R
3
, one of which may degenerate into a single line segment. It turns out that rational two-flat zonotopes admit a multiple tiling with an aperiodic (nonquasi-periodic) set of translation vectors
Λ
. We note that it may be quite difficult to offer a visualization of these 3-dimensional non-quasi-periodic tilings, and that we discovered them by using Fourier methods.</description><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Euclidean space</subject><subject>Fourier transforms</subject><subject>Lattice theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kLFOwzAQQC0EEqXwAWyRWDHcxU5tj6hQQCpCgjJbsWNXqUIS7GTg73EUBhamu-G9O-kRcolwgwDiNgLwglNARlXBJWVHZIGc5RQ458dkASgULZhYnZKzGA-QcAVyQa7fhzDaYQwue3NxbIaY-S5kL2mr-8Zlu7qp233M6jZj9-fkxJdNdBe_c0k-Ng-79RPdvj4-r--21LJCDdShAFVKUCAECPBCGcOh8iik8pyBLRh45XNcubK06E1lmM2lcTw3DCvOluRqvtuH7mt0cdCHbgxteqkxuTkWSrJE4UzZ0MUYnNd9qD_L8K0R9BRFz1F0iqKnKHpy8tmJiW33Lvy5_K_0A2v2Ymo</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Gravin, Nick</creator><creator>Kolountzakis, Mihail N.</creator><creator>Robins, Sinai</creator><creator>Shiryaev, Dmitry</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20131201</creationdate><title>Structure Results for Multiple Tilings in 3D</title><author>Gravin, Nick ; Kolountzakis, Mihail N. ; Robins, Sinai ; Shiryaev, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e1709a809077070f79bb40df1789f430c530f9f216eaac1fbdb3c28be42b31d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Euclidean space</topic><topic>Fourier transforms</topic><topic>Lattice theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gravin, Nick</creatorcontrib><creatorcontrib>Kolountzakis, Mihail N.</creatorcontrib><creatorcontrib>Robins, Sinai</creatorcontrib><creatorcontrib>Shiryaev, Dmitry</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete & computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gravin, Nick</au><au>Kolountzakis, Mihail N.</au><au>Robins, Sinai</au><au>Shiryaev, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure Results for Multiple Tilings in 3D</atitle><jtitle>Discrete & computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>50</volume><issue>4</issue><spage>1033</spage><epage>1050</epage><pages>1033-1050</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>We study multiple tilings of 3-dimensional Euclidean space by a convex body. In a multiple tiling, a convex body
P
is translated with a discrete multiset
Λ
in such a way that each point of
R
d
gets covered exactly
k
times, except perhaps the translated copies of the boundary of
P
. It is known that all possible multiple tilers in
R
3
are zonotopes. In
R
2
it was known by the work of Kolountzakis (Discrete Comput Geom 23(4):537–553,
2000
) that, unless
P
is a parallelogram, the multiset of translation vectors
Λ
must be a finite union of translated lattices (also known as quasi periodic sets). In that work (Kolountzakis, Discrete Comput Geom 23(4):537–553,
2000
) the author asked whether the same quasi-periodic structure on the translation vectors would be true in
R
3
. Here we prove that this conclusion is indeed true for
R
3
. Namely, we show that if
P
is a convex multiple tiler in
R
3
, with a discrete multiset
Λ
of translation vectors, then
Λ
has to be a finite union of translated lattices, unless
P
belongs to a special class of zonotopes. This exceptional class consists of two-flat zonotopes
P
, defined by the Minkowski sum of two 2-dimensional symmetric polygons in
R
3
, one of which may degenerate into a single line segment. It turns out that rational two-flat zonotopes admit a multiple tiling with an aperiodic (nonquasi-periodic) set of translation vectors
Λ
. We note that it may be quite difficult to offer a visualization of these 3-dimensional non-quasi-periodic tilings, and that we discovered them by using Fourier methods.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s00454-013-9548-3</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-5376 |
ispartof | Discrete & computational geometry, 2013-12, Vol.50 (4), p.1033-1050 |
issn | 0179-5376 1432-0444 |
language | eng |
recordid | cdi_proquest_journals_1530215983 |
source | SpringerLink Journals - AutoHoldings |
subjects | Combinatorics Computational Mathematics and Numerical Analysis Euclidean space Fourier transforms Lattice theory Mathematics Mathematics and Statistics |
title | Structure Results for Multiple Tilings in 3D |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20Results%20for%20Multiple%20Tilings%20in%203D&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Gravin,%20Nick&rft.date=2013-12-01&rft.volume=50&rft.issue=4&rft.spage=1033&rft.epage=1050&rft.pages=1033-1050&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-013-9548-3&rft_dat=%3Cproquest_cross%3E3318725221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530215983&rft_id=info:pmid/&rfr_iscdi=true |