Nonlinear wave run-up in bays of arbitrary cross-section: generalization of the Carrier–Greenspan approach
We present an exact analytical solution of the nonlinear shallow water theory for wave run-up in inclined channels of arbitrary cross-section, which generalizes previous studies on wave run-up for a plane beach and channels of parabolic cross-section. The solution is found using a hodograph-type tra...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2014-06, Vol.748, p.416-432 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an exact analytical solution of the nonlinear shallow water theory for wave run-up in inclined channels of arbitrary cross-section, which generalizes previous studies on wave run-up for a plane beach and channels of parabolic cross-section. The solution is found using a hodograph-type transform, which extends the well-known Carrier–Greenspan transform for wave run-up on a plane beach. As a result, the nonlinear shallow water equations are reduced to a single one-dimensional linear wave equation for an auxiliary function and all physical variables can be expressed in terms of this function by purely algebraic formulas. In the special case of a U-shaped channel this equation coincides with a spherically symmetric wave equation in space, whose dimension is defined by the channel cross-section and can be fractional. As an example, the run-up of a sinusoidal wave on a beach is considered for channels of several different cross-sections and the influence of the cross-section on wave run-up characteristics is studied. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2014.197 |