Estimation of Choice-Based Models Using Sales Data from a Single Firm

We develop a parameter estimation routine for multinomial logit discrete choice models in which one alternative is completely censored, i.e., when one alternative is never observed to have been chosen in the estimation data set. Our method is based on decomposing the log-likelihood function into mar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manufacturing & service operations management 2014-03, Vol.16 (2), p.184-197
Hauptverfasser: Newman, Jeffrey P, Ferguson, Mark E, Garrow, Laurie A, Jacobs, Timothy L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 2
container_start_page 184
container_title Manufacturing & service operations management
container_volume 16
creator Newman, Jeffrey P
Ferguson, Mark E
Garrow, Laurie A
Jacobs, Timothy L
description We develop a parameter estimation routine for multinomial logit discrete choice models in which one alternative is completely censored, i.e., when one alternative is never observed to have been chosen in the estimation data set. Our method is based on decomposing the log-likelihood function into marginal and conditional components. Our method is computationally efficient, provides consistent parameter estimates, and can easily incorporate price and other product attributes. Simulations based on industry hotel data demonstrate the superior computational performance of our method over alternative estimation methods that are capable of estimating price effects. Because most existing revenue management choice-based optimization algorithms do not include price as a decision variable, our estimation procedure provides the inputs needed for more advanced product portfolio availability and price optimization models.
doi_str_mv 10.1287/msom.2014.0475
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1528518672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A370444503</galeid><sourcerecordid>A370444503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-900723e6aa1eccdcb4693e50c5d54c63a5cbcdf130c4f252fa175a8fd7c305da3</originalsourceid><addsrcrecordid>eNqFkc9LwzAUx4soOKdXzwGvtiZN0nbHOTcVJh7mziFLky6jbWZed_C_N1XxBxTkQd7j8Xm_8o2iS4ITkhb5TQOuSVJMWIJZzo-iEeFpFnM2KY4_YhqzjLDT6AxghzEmBU5H0XwOnW1kZ12LnEGzrbNKx7cSdImeXKlrQGuwbYVWstaA7mQnkfGuQRKtQrrWaGF9cx6dGFmDvvjy42i9mL_MHuLl8_3jbLqMFSekiycY5ynVmZREK1WqDcsmVHOseMmZyqjkaqNKQyhWzKQ8NZLkXBamzBXFvJR0HF199t1793rQ0ImdO_g2jBThwIKTIgsDvqkq7Cxsa1znpWosKDGlOWaMcUwDFQ9QlW61l7VrtbEh_YdPBvhgpW6sGiy4_lWwOYRv1BAesNW2g0oeAAb7K-8AvDZi74My_k0QLHqBRS-w6AUWvcA_B_S7-Ab-498BHeqkqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528518672</pqid></control><display><type>article</type><title>Estimation of Choice-Based Models Using Sales Data from a Single Firm</title><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><creator>Newman, Jeffrey P ; Ferguson, Mark E ; Garrow, Laurie A ; Jacobs, Timothy L</creator><creatorcontrib>Newman, Jeffrey P ; Ferguson, Mark E ; Garrow, Laurie A ; Jacobs, Timothy L</creatorcontrib><description>We develop a parameter estimation routine for multinomial logit discrete choice models in which one alternative is completely censored, i.e., when one alternative is never observed to have been chosen in the estimation data set. Our method is based on decomposing the log-likelihood function into marginal and conditional components. Our method is computationally efficient, provides consistent parameter estimates, and can easily incorporate price and other product attributes. Simulations based on industry hotel data demonstrate the superior computational performance of our method over alternative estimation methods that are capable of estimating price effects. Because most existing revenue management choice-based optimization algorithms do not include price as a decision variable, our estimation procedure provides the inputs needed for more advanced product portfolio availability and price optimization models.</description><identifier>ISSN: 1523-4614</identifier><identifier>EISSN: 1526-5498</identifier><identifier>DOI: 10.1287/msom.2014.0475</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Analysis ; censored alternatives ; Censorship ; choice-based revenue management ; discrete choice modeling ; Mathematical optimization ; Optimization algorithms ; Parameter estimation ; Pricing ; Revenue management ; sampling of alternatives ; Studies</subject><ispartof>Manufacturing &amp; service operations management, 2014-03, Vol.16 (2), p.184-197</ispartof><rights>COPYRIGHT 2014 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Spring 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-900723e6aa1eccdcb4693e50c5d54c63a5cbcdf130c4f252fa175a8fd7c305da3</citedby><cites>FETCH-LOGICAL-c511t-900723e6aa1eccdcb4693e50c5d54c63a5cbcdf130c4f252fa175a8fd7c305da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/msom.2014.0475$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Newman, Jeffrey P</creatorcontrib><creatorcontrib>Ferguson, Mark E</creatorcontrib><creatorcontrib>Garrow, Laurie A</creatorcontrib><creatorcontrib>Jacobs, Timothy L</creatorcontrib><title>Estimation of Choice-Based Models Using Sales Data from a Single Firm</title><title>Manufacturing &amp; service operations management</title><description>We develop a parameter estimation routine for multinomial logit discrete choice models in which one alternative is completely censored, i.e., when one alternative is never observed to have been chosen in the estimation data set. Our method is based on decomposing the log-likelihood function into marginal and conditional components. Our method is computationally efficient, provides consistent parameter estimates, and can easily incorporate price and other product attributes. Simulations based on industry hotel data demonstrate the superior computational performance of our method over alternative estimation methods that are capable of estimating price effects. Because most existing revenue management choice-based optimization algorithms do not include price as a decision variable, our estimation procedure provides the inputs needed for more advanced product portfolio availability and price optimization models.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>censored alternatives</subject><subject>Censorship</subject><subject>choice-based revenue management</subject><subject>discrete choice modeling</subject><subject>Mathematical optimization</subject><subject>Optimization algorithms</subject><subject>Parameter estimation</subject><subject>Pricing</subject><subject>Revenue management</subject><subject>sampling of alternatives</subject><subject>Studies</subject><issn>1523-4614</issn><issn>1526-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkc9LwzAUx4soOKdXzwGvtiZN0nbHOTcVJh7mziFLky6jbWZed_C_N1XxBxTkQd7j8Xm_8o2iS4ITkhb5TQOuSVJMWIJZzo-iEeFpFnM2KY4_YhqzjLDT6AxghzEmBU5H0XwOnW1kZ12LnEGzrbNKx7cSdImeXKlrQGuwbYVWstaA7mQnkfGuQRKtQrrWaGF9cx6dGFmDvvjy42i9mL_MHuLl8_3jbLqMFSekiycY5ynVmZREK1WqDcsmVHOseMmZyqjkaqNKQyhWzKQ8NZLkXBamzBXFvJR0HF199t1793rQ0ImdO_g2jBThwIKTIgsDvqkq7Cxsa1znpWosKDGlOWaMcUwDFQ9QlW61l7VrtbEh_YdPBvhgpW6sGiy4_lWwOYRv1BAesNW2g0oeAAb7K-8AvDZi74My_k0QLHqBRS-w6AUWvcA_B_S7-Ab-498BHeqkqA</recordid><startdate>20140322</startdate><enddate>20140322</enddate><creator>Newman, Jeffrey P</creator><creator>Ferguson, Mark E</creator><creator>Garrow, Laurie A</creator><creator>Jacobs, Timothy L</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope></search><sort><creationdate>20140322</creationdate><title>Estimation of Choice-Based Models Using Sales Data from a Single Firm</title><author>Newman, Jeffrey P ; Ferguson, Mark E ; Garrow, Laurie A ; Jacobs, Timothy L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-900723e6aa1eccdcb4693e50c5d54c63a5cbcdf130c4f252fa175a8fd7c305da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>censored alternatives</topic><topic>Censorship</topic><topic>choice-based revenue management</topic><topic>discrete choice modeling</topic><topic>Mathematical optimization</topic><topic>Optimization algorithms</topic><topic>Parameter estimation</topic><topic>Pricing</topic><topic>Revenue management</topic><topic>sampling of alternatives</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newman, Jeffrey P</creatorcontrib><creatorcontrib>Ferguson, Mark E</creatorcontrib><creatorcontrib>Garrow, Laurie A</creatorcontrib><creatorcontrib>Jacobs, Timothy L</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><jtitle>Manufacturing &amp; service operations management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newman, Jeffrey P</au><au>Ferguson, Mark E</au><au>Garrow, Laurie A</au><au>Jacobs, Timothy L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Choice-Based Models Using Sales Data from a Single Firm</atitle><jtitle>Manufacturing &amp; service operations management</jtitle><date>2014-03-22</date><risdate>2014</risdate><volume>16</volume><issue>2</issue><spage>184</spage><epage>197</epage><pages>184-197</pages><issn>1523-4614</issn><eissn>1526-5498</eissn><abstract>We develop a parameter estimation routine for multinomial logit discrete choice models in which one alternative is completely censored, i.e., when one alternative is never observed to have been chosen in the estimation data set. Our method is based on decomposing the log-likelihood function into marginal and conditional components. Our method is computationally efficient, provides consistent parameter estimates, and can easily incorporate price and other product attributes. Simulations based on industry hotel data demonstrate the superior computational performance of our method over alternative estimation methods that are capable of estimating price effects. Because most existing revenue management choice-based optimization algorithms do not include price as a decision variable, our estimation procedure provides the inputs needed for more advanced product portfolio availability and price optimization models.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/msom.2014.0475</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1523-4614
ispartof Manufacturing & service operations management, 2014-03, Vol.16 (2), p.184-197
issn 1523-4614
1526-5498
language eng
recordid cdi_proquest_journals_1528518672
source INFORMS PubsOnLine; EBSCOhost Business Source Complete
subjects Algorithms
Analysis
censored alternatives
Censorship
choice-based revenue management
discrete choice modeling
Mathematical optimization
Optimization algorithms
Parameter estimation
Pricing
Revenue management
sampling of alternatives
Studies
title Estimation of Choice-Based Models Using Sales Data from a Single Firm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Choice-Based%20Models%20Using%20Sales%20Data%20from%20a%20Single%20Firm&rft.jtitle=Manufacturing%20&%20service%20operations%20management&rft.au=Newman,%20Jeffrey%20P&rft.date=2014-03-22&rft.volume=16&rft.issue=2&rft.spage=184&rft.epage=197&rft.pages=184-197&rft.issn=1523-4614&rft.eissn=1526-5498&rft_id=info:doi/10.1287/msom.2014.0475&rft_dat=%3Cgale_proqu%3EA370444503%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1528518672&rft_id=info:pmid/&rft_galeid=A370444503&rfr_iscdi=true