Estimation of Choice-Based Models Using Sales Data from a Single Firm
We develop a parameter estimation routine for multinomial logit discrete choice models in which one alternative is completely censored, i.e., when one alternative is never observed to have been chosen in the estimation data set. Our method is based on decomposing the log-likelihood function into mar...
Gespeichert in:
Veröffentlicht in: | Manufacturing & service operations management 2014-03, Vol.16 (2), p.184-197 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | 2 |
container_start_page | 184 |
container_title | Manufacturing & service operations management |
container_volume | 16 |
creator | Newman, Jeffrey P Ferguson, Mark E Garrow, Laurie A Jacobs, Timothy L |
description | We develop a parameter estimation routine for multinomial logit discrete choice models in which one alternative is completely censored, i.e., when one alternative is never observed to have been chosen in the estimation data set. Our method is based on decomposing the log-likelihood function into marginal and conditional components. Our method is computationally efficient, provides consistent parameter estimates, and can easily incorporate price and other product attributes. Simulations based on industry hotel data demonstrate the superior computational performance of our method over alternative estimation methods that are capable of estimating price effects. Because most existing revenue management choice-based optimization algorithms do not include price as a decision variable, our estimation procedure provides the inputs needed for more advanced product portfolio availability and price optimization models. |
doi_str_mv | 10.1287/msom.2014.0475 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1528518672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A370444503</galeid><sourcerecordid>A370444503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-900723e6aa1eccdcb4693e50c5d54c63a5cbcdf130c4f252fa175a8fd7c305da3</originalsourceid><addsrcrecordid>eNqFkc9LwzAUx4soOKdXzwGvtiZN0nbHOTcVJh7mziFLky6jbWZed_C_N1XxBxTkQd7j8Xm_8o2iS4ITkhb5TQOuSVJMWIJZzo-iEeFpFnM2KY4_YhqzjLDT6AxghzEmBU5H0XwOnW1kZ12LnEGzrbNKx7cSdImeXKlrQGuwbYVWstaA7mQnkfGuQRKtQrrWaGF9cx6dGFmDvvjy42i9mL_MHuLl8_3jbLqMFSekiycY5ynVmZREK1WqDcsmVHOseMmZyqjkaqNKQyhWzKQ8NZLkXBamzBXFvJR0HF199t1793rQ0ImdO_g2jBThwIKTIgsDvqkq7Cxsa1znpWosKDGlOWaMcUwDFQ9QlW61l7VrtbEh_YdPBvhgpW6sGiy4_lWwOYRv1BAesNW2g0oeAAb7K-8AvDZi74My_k0QLHqBRS-w6AUWvcA_B_S7-Ab-498BHeqkqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528518672</pqid></control><display><type>article</type><title>Estimation of Choice-Based Models Using Sales Data from a Single Firm</title><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><creator>Newman, Jeffrey P ; Ferguson, Mark E ; Garrow, Laurie A ; Jacobs, Timothy L</creator><creatorcontrib>Newman, Jeffrey P ; Ferguson, Mark E ; Garrow, Laurie A ; Jacobs, Timothy L</creatorcontrib><description>We develop a parameter estimation routine for multinomial logit discrete choice models in which one alternative is completely censored, i.e., when one alternative is never observed to have been chosen in the estimation data set. Our method is based on decomposing the log-likelihood function into marginal and conditional components. Our method is computationally efficient, provides consistent parameter estimates, and can easily incorporate price and other product attributes. Simulations based on industry hotel data demonstrate the superior computational performance of our method over alternative estimation methods that are capable of estimating price effects. Because most existing revenue management choice-based optimization algorithms do not include price as a decision variable, our estimation procedure provides the inputs needed for more advanced product portfolio availability and price optimization models.</description><identifier>ISSN: 1523-4614</identifier><identifier>EISSN: 1526-5498</identifier><identifier>DOI: 10.1287/msom.2014.0475</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Analysis ; censored alternatives ; Censorship ; choice-based revenue management ; discrete choice modeling ; Mathematical optimization ; Optimization algorithms ; Parameter estimation ; Pricing ; Revenue management ; sampling of alternatives ; Studies</subject><ispartof>Manufacturing & service operations management, 2014-03, Vol.16 (2), p.184-197</ispartof><rights>COPYRIGHT 2014 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Spring 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-900723e6aa1eccdcb4693e50c5d54c63a5cbcdf130c4f252fa175a8fd7c305da3</citedby><cites>FETCH-LOGICAL-c511t-900723e6aa1eccdcb4693e50c5d54c63a5cbcdf130c4f252fa175a8fd7c305da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/msom.2014.0475$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Newman, Jeffrey P</creatorcontrib><creatorcontrib>Ferguson, Mark E</creatorcontrib><creatorcontrib>Garrow, Laurie A</creatorcontrib><creatorcontrib>Jacobs, Timothy L</creatorcontrib><title>Estimation of Choice-Based Models Using Sales Data from a Single Firm</title><title>Manufacturing & service operations management</title><description>We develop a parameter estimation routine for multinomial logit discrete choice models in which one alternative is completely censored, i.e., when one alternative is never observed to have been chosen in the estimation data set. Our method is based on decomposing the log-likelihood function into marginal and conditional components. Our method is computationally efficient, provides consistent parameter estimates, and can easily incorporate price and other product attributes. Simulations based on industry hotel data demonstrate the superior computational performance of our method over alternative estimation methods that are capable of estimating price effects. Because most existing revenue management choice-based optimization algorithms do not include price as a decision variable, our estimation procedure provides the inputs needed for more advanced product portfolio availability and price optimization models.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>censored alternatives</subject><subject>Censorship</subject><subject>choice-based revenue management</subject><subject>discrete choice modeling</subject><subject>Mathematical optimization</subject><subject>Optimization algorithms</subject><subject>Parameter estimation</subject><subject>Pricing</subject><subject>Revenue management</subject><subject>sampling of alternatives</subject><subject>Studies</subject><issn>1523-4614</issn><issn>1526-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkc9LwzAUx4soOKdXzwGvtiZN0nbHOTcVJh7mziFLky6jbWZed_C_N1XxBxTkQd7j8Xm_8o2iS4ITkhb5TQOuSVJMWIJZzo-iEeFpFnM2KY4_YhqzjLDT6AxghzEmBU5H0XwOnW1kZ12LnEGzrbNKx7cSdImeXKlrQGuwbYVWstaA7mQnkfGuQRKtQrrWaGF9cx6dGFmDvvjy42i9mL_MHuLl8_3jbLqMFSekiycY5ynVmZREK1WqDcsmVHOseMmZyqjkaqNKQyhWzKQ8NZLkXBamzBXFvJR0HF199t1793rQ0ImdO_g2jBThwIKTIgsDvqkq7Cxsa1znpWosKDGlOWaMcUwDFQ9QlW61l7VrtbEh_YdPBvhgpW6sGiy4_lWwOYRv1BAesNW2g0oeAAb7K-8AvDZi74My_k0QLHqBRS-w6AUWvcA_B_S7-Ab-498BHeqkqA</recordid><startdate>20140322</startdate><enddate>20140322</enddate><creator>Newman, Jeffrey P</creator><creator>Ferguson, Mark E</creator><creator>Garrow, Laurie A</creator><creator>Jacobs, Timothy L</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope></search><sort><creationdate>20140322</creationdate><title>Estimation of Choice-Based Models Using Sales Data from a Single Firm</title><author>Newman, Jeffrey P ; Ferguson, Mark E ; Garrow, Laurie A ; Jacobs, Timothy L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-900723e6aa1eccdcb4693e50c5d54c63a5cbcdf130c4f252fa175a8fd7c305da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>censored alternatives</topic><topic>Censorship</topic><topic>choice-based revenue management</topic><topic>discrete choice modeling</topic><topic>Mathematical optimization</topic><topic>Optimization algorithms</topic><topic>Parameter estimation</topic><topic>Pricing</topic><topic>Revenue management</topic><topic>sampling of alternatives</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newman, Jeffrey P</creatorcontrib><creatorcontrib>Ferguson, Mark E</creatorcontrib><creatorcontrib>Garrow, Laurie A</creatorcontrib><creatorcontrib>Jacobs, Timothy L</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><jtitle>Manufacturing & service operations management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newman, Jeffrey P</au><au>Ferguson, Mark E</au><au>Garrow, Laurie A</au><au>Jacobs, Timothy L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Choice-Based Models Using Sales Data from a Single Firm</atitle><jtitle>Manufacturing & service operations management</jtitle><date>2014-03-22</date><risdate>2014</risdate><volume>16</volume><issue>2</issue><spage>184</spage><epage>197</epage><pages>184-197</pages><issn>1523-4614</issn><eissn>1526-5498</eissn><abstract>We develop a parameter estimation routine for multinomial logit discrete choice models in which one alternative is completely censored, i.e., when one alternative is never observed to have been chosen in the estimation data set. Our method is based on decomposing the log-likelihood function into marginal and conditional components. Our method is computationally efficient, provides consistent parameter estimates, and can easily incorporate price and other product attributes. Simulations based on industry hotel data demonstrate the superior computational performance of our method over alternative estimation methods that are capable of estimating price effects. Because most existing revenue management choice-based optimization algorithms do not include price as a decision variable, our estimation procedure provides the inputs needed for more advanced product portfolio availability and price optimization models.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/msom.2014.0475</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1523-4614 |
ispartof | Manufacturing & service operations management, 2014-03, Vol.16 (2), p.184-197 |
issn | 1523-4614 1526-5498 |
language | eng |
recordid | cdi_proquest_journals_1528518672 |
source | INFORMS PubsOnLine; EBSCOhost Business Source Complete |
subjects | Algorithms Analysis censored alternatives Censorship choice-based revenue management discrete choice modeling Mathematical optimization Optimization algorithms Parameter estimation Pricing Revenue management sampling of alternatives Studies |
title | Estimation of Choice-Based Models Using Sales Data from a Single Firm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Choice-Based%20Models%20Using%20Sales%20Data%20from%20a%20Single%20Firm&rft.jtitle=Manufacturing%20&%20service%20operations%20management&rft.au=Newman,%20Jeffrey%20P&rft.date=2014-03-22&rft.volume=16&rft.issue=2&rft.spage=184&rft.epage=197&rft.pages=184-197&rft.issn=1523-4614&rft.eissn=1526-5498&rft_id=info:doi/10.1287/msom.2014.0475&rft_dat=%3Cgale_proqu%3EA370444503%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1528518672&rft_id=info:pmid/&rft_galeid=A370444503&rfr_iscdi=true |