Effect of Mixed Grain Sizes on the Thermoelectric Properties of Ca^sub 0.9^Yb^sub 0.1^MnO3

Issue Title: International Conference on Thermoelectrics 2013. Guest Editors: Jihui Yang, Hiroaki Anno, Matt Beekman, Ryoji Funahashi, Yuri Grin, Emmanuel Guilmeau, Jan Koenig, Bertrand Lenoir, Don Morelli, Lasse Rosendahl, James R. Salvador, Jeff Sharp, David Singh, Tsunehiro Takeuchi, Xiegeng Tang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2014-06, Vol.43 (6), p.1548
Hauptverfasser: Fukui, Tsubasa, Matsuzawa, Mie, Funahashi, Ryoji, Kosuga, Atsuko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1548
container_title Journal of electronic materials
container_volume 43
creator Fukui, Tsubasa
Matsuzawa, Mie
Funahashi, Ryoji
Kosuga, Atsuko
description Issue Title: International Conference on Thermoelectrics 2013. Guest Editors: Jihui Yang, Hiroaki Anno, Matt Beekman, Ryoji Funahashi, Yuri Grin, Emmanuel Guilmeau, Jan Koenig, Bertrand Lenoir, Don Morelli, Lasse Rosendahl, James R. Salvador, Jeff Sharp, David Singh, Tsunehiro Takeuchi, Xiegeng Tang, Chunlei Wang, Hsin Wang, Wenqing Zhang, and Tie-Jun Zhu Ca^sub 0.9^Yb^sub 0.1^MnO3 has been identified as a material that might be suitable for thermoelectric applications. We fabricated micro/nanograined Ca^sub 0.9^Yb^sub 0.1^MnO3 composites, with the aim of controlling the passage of electrons and phonons simultaneously. Micro/nanograined Ca^sub 0.9^Yb^sub 0.1^MnO3 composites containing various fractions of nanosized powder were prepared by sintering mixtures of microparticulate and nanoparticulate Ca^sub 0.9^Yb^sub 0.1^MnO3, obtained by solid-state reaction and by gas-phase reaction, respectively. The electrical resistivity increased markedly when the weight fraction of nanosized powder exceeded 50%, probably as a result of a percolation phenomenon. However, the thermal conductivity was considerably reduced when the weight fraction of nanosized powder exceeded 25%, but then remained almost constant. The absolute values of the Seebeck coefficient of micro/nanograined Ca^sub 0.9^Yb^sub 0.1^MnO3 composites were larger than those of monolithic micro- or nanograin Ca^sub 0.9^Yb^sub 0.1^MnO3, probably as a result of the effects of potential-barrier scattering. The highest dimensionless figure of merit ZT value of 0.09 at 973 K was achieved with a sample containing 50% nanosized powder, and this value is 10% larger than that of monolithic micrograined Ca^sub 0.9^Yb^sub 0.1^MnO3.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11664-013-2778-6
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1524804969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3304849291</sourcerecordid><originalsourceid>FETCH-proquest_journals_15248049693</originalsourceid><addsrcrecordid>eNqNysFqwkAUheFBFIytD9DdBddj781kJslatG6khbpou4hEewdHNKMzCZQ-fS34AK7OD-cT4olwSoj5cyQyJpNISqZ5XkjTEwnpTEkqzEdfJKgMSZ0qPRSjGA-IpKmgRHzNreVdC97Cyv3wN7yE2jXw7n45gm-g3TOs9xxOno9XF9wO3oI_c2jdP7Awq6vYbQGnZfW5vSVVq-ZVPYqBrY-Rx7d9EJPFfD1bynPwl45juzn4LjTXa0M6zQrMSlOq-9QfHJ9HGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524804969</pqid></control><display><type>article</type><title>Effect of Mixed Grain Sizes on the Thermoelectric Properties of Ca^sub 0.9^Yb^sub 0.1^MnO3</title><source>SpringerLink Journals</source><creator>Fukui, Tsubasa ; Matsuzawa, Mie ; Funahashi, Ryoji ; Kosuga, Atsuko</creator><creatorcontrib>Fukui, Tsubasa ; Matsuzawa, Mie ; Funahashi, Ryoji ; Kosuga, Atsuko</creatorcontrib><description>Issue Title: International Conference on Thermoelectrics 2013. Guest Editors: Jihui Yang, Hiroaki Anno, Matt Beekman, Ryoji Funahashi, Yuri Grin, Emmanuel Guilmeau, Jan Koenig, Bertrand Lenoir, Don Morelli, Lasse Rosendahl, James R. Salvador, Jeff Sharp, David Singh, Tsunehiro Takeuchi, Xiegeng Tang, Chunlei Wang, Hsin Wang, Wenqing Zhang, and Tie-Jun Zhu Ca^sub 0.9^Yb^sub 0.1^MnO3 has been identified as a material that might be suitable for thermoelectric applications. We fabricated micro/nanograined Ca^sub 0.9^Yb^sub 0.1^MnO3 composites, with the aim of controlling the passage of electrons and phonons simultaneously. Micro/nanograined Ca^sub 0.9^Yb^sub 0.1^MnO3 composites containing various fractions of nanosized powder were prepared by sintering mixtures of microparticulate and nanoparticulate Ca^sub 0.9^Yb^sub 0.1^MnO3, obtained by solid-state reaction and by gas-phase reaction, respectively. The electrical resistivity increased markedly when the weight fraction of nanosized powder exceeded 50%, probably as a result of a percolation phenomenon. However, the thermal conductivity was considerably reduced when the weight fraction of nanosized powder exceeded 25%, but then remained almost constant. The absolute values of the Seebeck coefficient of micro/nanograined Ca^sub 0.9^Yb^sub 0.1^MnO3 composites were larger than those of monolithic micro- or nanograin Ca^sub 0.9^Yb^sub 0.1^MnO3, probably as a result of the effects of potential-barrier scattering. The highest dimensionless figure of merit ZT value of 0.09 at 973 K was achieved with a sample containing 50% nanosized powder, and this value is 10% larger than that of monolithic micrograined Ca^sub 0.9^Yb^sub 0.1^MnO3.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-013-2778-6</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>Conductivity ; Electric properties ; Electrical engineering ; Grain size ; Materials science</subject><ispartof>Journal of electronic materials, 2014-06, Vol.43 (6), p.1548</ispartof><rights>TMS 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fukui, Tsubasa</creatorcontrib><creatorcontrib>Matsuzawa, Mie</creatorcontrib><creatorcontrib>Funahashi, Ryoji</creatorcontrib><creatorcontrib>Kosuga, Atsuko</creatorcontrib><title>Effect of Mixed Grain Sizes on the Thermoelectric Properties of Ca^sub 0.9^Yb^sub 0.1^MnO3</title><title>Journal of electronic materials</title><description>Issue Title: International Conference on Thermoelectrics 2013. Guest Editors: Jihui Yang, Hiroaki Anno, Matt Beekman, Ryoji Funahashi, Yuri Grin, Emmanuel Guilmeau, Jan Koenig, Bertrand Lenoir, Don Morelli, Lasse Rosendahl, James R. Salvador, Jeff Sharp, David Singh, Tsunehiro Takeuchi, Xiegeng Tang, Chunlei Wang, Hsin Wang, Wenqing Zhang, and Tie-Jun Zhu Ca^sub 0.9^Yb^sub 0.1^MnO3 has been identified as a material that might be suitable for thermoelectric applications. We fabricated micro/nanograined Ca^sub 0.9^Yb^sub 0.1^MnO3 composites, with the aim of controlling the passage of electrons and phonons simultaneously. Micro/nanograined Ca^sub 0.9^Yb^sub 0.1^MnO3 composites containing various fractions of nanosized powder were prepared by sintering mixtures of microparticulate and nanoparticulate Ca^sub 0.9^Yb^sub 0.1^MnO3, obtained by solid-state reaction and by gas-phase reaction, respectively. The electrical resistivity increased markedly when the weight fraction of nanosized powder exceeded 50%, probably as a result of a percolation phenomenon. However, the thermal conductivity was considerably reduced when the weight fraction of nanosized powder exceeded 25%, but then remained almost constant. The absolute values of the Seebeck coefficient of micro/nanograined Ca^sub 0.9^Yb^sub 0.1^MnO3 composites were larger than those of monolithic micro- or nanograin Ca^sub 0.9^Yb^sub 0.1^MnO3, probably as a result of the effects of potential-barrier scattering. The highest dimensionless figure of merit ZT value of 0.09 at 973 K was achieved with a sample containing 50% nanosized powder, and this value is 10% larger than that of monolithic micrograined Ca^sub 0.9^Yb^sub 0.1^MnO3.[PUBLICATION ABSTRACT]</description><subject>Conductivity</subject><subject>Electric properties</subject><subject>Electrical engineering</subject><subject>Grain size</subject><subject>Materials science</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNysFqwkAUheFBFIytD9DdBddj781kJslatG6khbpou4hEewdHNKMzCZQ-fS34AK7OD-cT4olwSoj5cyQyJpNISqZ5XkjTEwnpTEkqzEdfJKgMSZ0qPRSjGA-IpKmgRHzNreVdC97Cyv3wN7yE2jXw7n45gm-g3TOs9xxOno9XF9wO3oI_c2jdP7Awq6vYbQGnZfW5vSVVq-ZVPYqBrY-Rx7d9EJPFfD1bynPwl45juzn4LjTXa0M6zQrMSlOq-9QfHJ9HGQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Fukui, Tsubasa</creator><creator>Matsuzawa, Mie</creator><creator>Funahashi, Ryoji</creator><creator>Kosuga, Atsuko</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20140601</creationdate><title>Effect of Mixed Grain Sizes on the Thermoelectric Properties of Ca^sub 0.9^Yb^sub 0.1^MnO3</title><author>Fukui, Tsubasa ; Matsuzawa, Mie ; Funahashi, Ryoji ; Kosuga, Atsuko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_15248049693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Conductivity</topic><topic>Electric properties</topic><topic>Electrical engineering</topic><topic>Grain size</topic><topic>Materials science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukui, Tsubasa</creatorcontrib><creatorcontrib>Matsuzawa, Mie</creatorcontrib><creatorcontrib>Funahashi, Ryoji</creatorcontrib><creatorcontrib>Kosuga, Atsuko</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukui, Tsubasa</au><au>Matsuzawa, Mie</au><au>Funahashi, Ryoji</au><au>Kosuga, Atsuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Mixed Grain Sizes on the Thermoelectric Properties of Ca^sub 0.9^Yb^sub 0.1^MnO3</atitle><jtitle>Journal of electronic materials</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>43</volume><issue>6</issue><spage>1548</spage><pages>1548-</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Issue Title: International Conference on Thermoelectrics 2013. Guest Editors: Jihui Yang, Hiroaki Anno, Matt Beekman, Ryoji Funahashi, Yuri Grin, Emmanuel Guilmeau, Jan Koenig, Bertrand Lenoir, Don Morelli, Lasse Rosendahl, James R. Salvador, Jeff Sharp, David Singh, Tsunehiro Takeuchi, Xiegeng Tang, Chunlei Wang, Hsin Wang, Wenqing Zhang, and Tie-Jun Zhu Ca^sub 0.9^Yb^sub 0.1^MnO3 has been identified as a material that might be suitable for thermoelectric applications. We fabricated micro/nanograined Ca^sub 0.9^Yb^sub 0.1^MnO3 composites, with the aim of controlling the passage of electrons and phonons simultaneously. Micro/nanograined Ca^sub 0.9^Yb^sub 0.1^MnO3 composites containing various fractions of nanosized powder were prepared by sintering mixtures of microparticulate and nanoparticulate Ca^sub 0.9^Yb^sub 0.1^MnO3, obtained by solid-state reaction and by gas-phase reaction, respectively. The electrical resistivity increased markedly when the weight fraction of nanosized powder exceeded 50%, probably as a result of a percolation phenomenon. However, the thermal conductivity was considerably reduced when the weight fraction of nanosized powder exceeded 25%, but then remained almost constant. The absolute values of the Seebeck coefficient of micro/nanograined Ca^sub 0.9^Yb^sub 0.1^MnO3 composites were larger than those of monolithic micro- or nanograin Ca^sub 0.9^Yb^sub 0.1^MnO3, probably as a result of the effects of potential-barrier scattering. The highest dimensionless figure of merit ZT value of 0.09 at 973 K was achieved with a sample containing 50% nanosized powder, and this value is 10% larger than that of monolithic micrograined Ca^sub 0.9^Yb^sub 0.1^MnO3.[PUBLICATION ABSTRACT]</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11664-013-2778-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2014-06, Vol.43 (6), p.1548
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1524804969
source SpringerLink Journals
subjects Conductivity
Electric properties
Electrical engineering
Grain size
Materials science
title Effect of Mixed Grain Sizes on the Thermoelectric Properties of Ca^sub 0.9^Yb^sub 0.1^MnO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Mixed%20Grain%20Sizes%20on%20the%20Thermoelectric%20Properties%20of%20Ca%5Esub%200.9%5EYb%5Esub%200.1%5EMnO3&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Fukui,%20Tsubasa&rft.date=2014-06-01&rft.volume=43&rft.issue=6&rft.spage=1548&rft.pages=1548-&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-013-2778-6&rft_dat=%3Cproquest%3E3304849291%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524804969&rft_id=info:pmid/&rfr_iscdi=true