Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study

First-principles prediction of enhancement in the electrochemical potential of LiCoO 2 with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO 4 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of materials science 2013-12, Vol.36 (7), p.1331-1337
Hauptverfasser: VARANASI, ARUN KUMAR, SANAGAVARAPU, PHANI KANTH, BHOWMIK, ARGHYA, BHARADWAJ, MRIDULA DIXIT, NARAYANA, BALASUBRAMANIAN, WAGHMARE, UMESH V, DEODHARE, DIPTI, SHARMA, ALIND
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1337
container_issue 7
container_start_page 1331
container_title Bulletin of materials science
container_volume 36
creator VARANASI, ARUN KUMAR
SANAGAVARAPU, PHANI KANTH
BHOWMIK, ARGHYA
BHARADWAJ, MRIDULA DIXIT
NARAYANA, BALASUBRAMANIAN
WAGHMARE, UMESH V
DEODHARE, DIPTI
SHARMA, ALIND
description First-principles prediction of enhancement in the electrochemical potential of LiCoO 2 with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO 4 and LiCoPO 4 . Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO 2 , LiFePO 4 and LiCoPO 4 . While Al substitution for transition metal results in increase in electrochemical potential of LiCoO 2 , it leads to reduction in LiFePO 4 and LiCoPO 4 . Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO 2 , it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal–oxygen bond plays a key role in determining battery potential.
doi_str_mv 10.1007/s12034-014-0618-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1522656769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3297748801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e4b559b4d5b8e13047e4044c1f2b6f813710a25cb8c941a72a56aefa82b194243</originalsourceid><addsrcrecordid>eNp1ULlOxDAQjRBILMcH0FmiDtiOHSd0q9VySCvRQG05zoR4lcTBdhb273EUChqK0UzxjnkvSW4IviMYi3tPKM5YikmcnBRpeZKscCmyVOR5eRpvynHKBBbnyYX3e4xJyRhZJYdtBzo4q1vojVYdGm2AIRjVeWQb1KkjOKiR_TY1IDXEqzMHMwAaW-vHVgVAXya0SHVTb4apR36qfDBhCsYOD2iNGuN8QKMzgzZjBx75MNXHq-SsiRZw_bsvk_fH7dvmOd29Pr1s1rtUZ7wMKbCK87JiNa8KIBlmAhhmTJOGVnlTkEwQrCjXVaFLRpSgiucKGlXQKuajLLtMbhfd0dnPCXyQezu5IVpKwinNeS7yMqLIgtLOeu-gkfHfXrmjJFjO9cqlXhnrlXO9cubQhePnbB_g_ij_S_oBKJZ_WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522656769</pqid></control><display><type>article</type><title>Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study</title><source>Indian Academy of Sciences</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><source>ProQuest Central</source><creator>VARANASI, ARUN KUMAR ; SANAGAVARAPU, PHANI KANTH ; BHOWMIK, ARGHYA ; BHARADWAJ, MRIDULA DIXIT ; NARAYANA, BALASUBRAMANIAN ; WAGHMARE, UMESH V ; DEODHARE, DIPTI ; SHARMA, ALIND</creator><creatorcontrib>VARANASI, ARUN KUMAR ; SANAGAVARAPU, PHANI KANTH ; BHOWMIK, ARGHYA ; BHARADWAJ, MRIDULA DIXIT ; NARAYANA, BALASUBRAMANIAN ; WAGHMARE, UMESH V ; DEODHARE, DIPTI ; SHARMA, ALIND</creatorcontrib><description>First-principles prediction of enhancement in the electrochemical potential of LiCoO 2 with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO 4 and LiCoPO 4 . Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO 2 , LiFePO 4 and LiCoPO 4 . While Al substitution for transition metal results in increase in electrochemical potential of LiCoO 2 , it leads to reduction in LiFePO 4 and LiCoPO 4 . Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO 2 , it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal–oxygen bond plays a key role in determining battery potential.</description><identifier>ISSN: 0250-4707</identifier><identifier>EISSN: 0973-7669</identifier><identifier>DOI: 10.1007/s12034-014-0618-9</identifier><language>eng</language><publisher>India: Springer India</publisher><subject>Aluminum ; Approximation ; Charge density ; Charge materials ; Charge transfer ; Chemistry and Materials Science ; Cobalt ; Crystal structure ; Density functional theory ; Electrochemical potential ; Electrode materials ; Electrons ; Energy ; Engineering ; First principles ; Iron ; Lithium ; Lithium compounds ; Lithium-ion batteries ; Materials Science ; Olivine ; Oxygen ; Phosphates ; Principles ; Rechargeable batteries ; Simulation ; Substitutes ; Transition metals</subject><ispartof>Bulletin of materials science, 2013-12, Vol.36 (7), p.1331-1337</ispartof><rights>Indian Academy of Sciences 2014</rights><rights>Indian Academy of Sciences 2014.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e4b559b4d5b8e13047e4044c1f2b6f813710a25cb8c941a72a56aefa82b194243</citedby><cites>FETCH-LOGICAL-c359t-e4b559b4d5b8e13047e4044c1f2b6f813710a25cb8c941a72a56aefa82b194243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1522656769/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1522656769?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294,74045</link.rule.ids></links><search><creatorcontrib>VARANASI, ARUN KUMAR</creatorcontrib><creatorcontrib>SANAGAVARAPU, PHANI KANTH</creatorcontrib><creatorcontrib>BHOWMIK, ARGHYA</creatorcontrib><creatorcontrib>BHARADWAJ, MRIDULA DIXIT</creatorcontrib><creatorcontrib>NARAYANA, BALASUBRAMANIAN</creatorcontrib><creatorcontrib>WAGHMARE, UMESH V</creatorcontrib><creatorcontrib>DEODHARE, DIPTI</creatorcontrib><creatorcontrib>SHARMA, ALIND</creatorcontrib><title>Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study</title><title>Bulletin of materials science</title><addtitle>Bull Mater Sci</addtitle><description>First-principles prediction of enhancement in the electrochemical potential of LiCoO 2 with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO 4 and LiCoPO 4 . Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO 2 , LiFePO 4 and LiCoPO 4 . While Al substitution for transition metal results in increase in electrochemical potential of LiCoO 2 , it leads to reduction in LiFePO 4 and LiCoPO 4 . Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO 2 , it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal–oxygen bond plays a key role in determining battery potential.</description><subject>Aluminum</subject><subject>Approximation</subject><subject>Charge density</subject><subject>Charge materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>Electrochemical potential</subject><subject>Electrode materials</subject><subject>Electrons</subject><subject>Energy</subject><subject>Engineering</subject><subject>First principles</subject><subject>Iron</subject><subject>Lithium</subject><subject>Lithium compounds</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Olivine</subject><subject>Oxygen</subject><subject>Phosphates</subject><subject>Principles</subject><subject>Rechargeable batteries</subject><subject>Simulation</subject><subject>Substitutes</subject><subject>Transition metals</subject><issn>0250-4707</issn><issn>0973-7669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1ULlOxDAQjRBILMcH0FmiDtiOHSd0q9VySCvRQG05zoR4lcTBdhb273EUChqK0UzxjnkvSW4IviMYi3tPKM5YikmcnBRpeZKscCmyVOR5eRpvynHKBBbnyYX3e4xJyRhZJYdtBzo4q1vojVYdGm2AIRjVeWQb1KkjOKiR_TY1IDXEqzMHMwAaW-vHVgVAXya0SHVTb4apR36qfDBhCsYOD2iNGuN8QKMzgzZjBx75MNXHq-SsiRZw_bsvk_fH7dvmOd29Pr1s1rtUZ7wMKbCK87JiNa8KIBlmAhhmTJOGVnlTkEwQrCjXVaFLRpSgiucKGlXQKuajLLtMbhfd0dnPCXyQezu5IVpKwinNeS7yMqLIgtLOeu-gkfHfXrmjJFjO9cqlXhnrlXO9cubQhePnbB_g_ij_S_oBKJZ_WA</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>VARANASI, ARUN KUMAR</creator><creator>SANAGAVARAPU, PHANI KANTH</creator><creator>BHOWMIK, ARGHYA</creator><creator>BHARADWAJ, MRIDULA DIXIT</creator><creator>NARAYANA, BALASUBRAMANIAN</creator><creator>WAGHMARE, UMESH V</creator><creator>DEODHARE, DIPTI</creator><creator>SHARMA, ALIND</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20131201</creationdate><title>Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study</title><author>VARANASI, ARUN KUMAR ; SANAGAVARAPU, PHANI KANTH ; BHOWMIK, ARGHYA ; BHARADWAJ, MRIDULA DIXIT ; NARAYANA, BALASUBRAMANIAN ; WAGHMARE, UMESH V ; DEODHARE, DIPTI ; SHARMA, ALIND</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e4b559b4d5b8e13047e4044c1f2b6f813710a25cb8c941a72a56aefa82b194243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum</topic><topic>Approximation</topic><topic>Charge density</topic><topic>Charge materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>Electrochemical potential</topic><topic>Electrode materials</topic><topic>Electrons</topic><topic>Energy</topic><topic>Engineering</topic><topic>First principles</topic><topic>Iron</topic><topic>Lithium</topic><topic>Lithium compounds</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Olivine</topic><topic>Oxygen</topic><topic>Phosphates</topic><topic>Principles</topic><topic>Rechargeable batteries</topic><topic>Simulation</topic><topic>Substitutes</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VARANASI, ARUN KUMAR</creatorcontrib><creatorcontrib>SANAGAVARAPU, PHANI KANTH</creatorcontrib><creatorcontrib>BHOWMIK, ARGHYA</creatorcontrib><creatorcontrib>BHARADWAJ, MRIDULA DIXIT</creatorcontrib><creatorcontrib>NARAYANA, BALASUBRAMANIAN</creatorcontrib><creatorcontrib>WAGHMARE, UMESH V</creatorcontrib><creatorcontrib>DEODHARE, DIPTI</creatorcontrib><creatorcontrib>SHARMA, ALIND</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Bulletin of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VARANASI, ARUN KUMAR</au><au>SANAGAVARAPU, PHANI KANTH</au><au>BHOWMIK, ARGHYA</au><au>BHARADWAJ, MRIDULA DIXIT</au><au>NARAYANA, BALASUBRAMANIAN</au><au>WAGHMARE, UMESH V</au><au>DEODHARE, DIPTI</au><au>SHARMA, ALIND</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study</atitle><jtitle>Bulletin of materials science</jtitle><stitle>Bull Mater Sci</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>36</volume><issue>7</issue><spage>1331</spage><epage>1337</epage><pages>1331-1337</pages><issn>0250-4707</issn><eissn>0973-7669</eissn><abstract>First-principles prediction of enhancement in the electrochemical potential of LiCoO 2 with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO 4 and LiCoPO 4 . Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO 2 , LiFePO 4 and LiCoPO 4 . While Al substitution for transition metal results in increase in electrochemical potential of LiCoO 2 , it leads to reduction in LiFePO 4 and LiCoPO 4 . Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO 2 , it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal–oxygen bond plays a key role in determining battery potential.</abstract><cop>India</cop><pub>Springer India</pub><doi>10.1007/s12034-014-0618-9</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0250-4707
ispartof Bulletin of materials science, 2013-12, Vol.36 (7), p.1331-1337
issn 0250-4707
0973-7669
language eng
recordid cdi_proquest_journals_1522656769
source Indian Academy of Sciences; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry; ProQuest Central
subjects Aluminum
Approximation
Charge density
Charge materials
Charge transfer
Chemistry and Materials Science
Cobalt
Crystal structure
Density functional theory
Electrochemical potential
Electrode materials
Electrons
Energy
Engineering
First principles
Iron
Lithium
Lithium compounds
Lithium-ion batteries
Materials Science
Olivine
Oxygen
Phosphates
Principles
Rechargeable batteries
Simulation
Substitutes
Transition metals
title Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20potentials%20of%20layered%20oxide%20and%20olivine%20phosphate%20with%20aluminum%20substitution:%20A%20first%20principles%20study&rft.jtitle=Bulletin%20of%20materials%20science&rft.au=VARANASI,%20ARUN%20KUMAR&rft.date=2013-12-01&rft.volume=36&rft.issue=7&rft.spage=1331&rft.epage=1337&rft.pages=1331-1337&rft.issn=0250-4707&rft.eissn=0973-7669&rft_id=info:doi/10.1007/s12034-014-0618-9&rft_dat=%3Cproquest_cross%3E3297748801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1522656769&rft_id=info:pmid/&rfr_iscdi=true