Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study
First-principles prediction of enhancement in the electrochemical potential of LiCoO 2 with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO 4 an...
Gespeichert in:
Veröffentlicht in: | Bulletin of materials science 2013-12, Vol.36 (7), p.1331-1337 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1337 |
---|---|
container_issue | 7 |
container_start_page | 1331 |
container_title | Bulletin of materials science |
container_volume | 36 |
creator | VARANASI, ARUN KUMAR SANAGAVARAPU, PHANI KANTH BHOWMIK, ARGHYA BHARADWAJ, MRIDULA DIXIT NARAYANA, BALASUBRAMANIAN WAGHMARE, UMESH V DEODHARE, DIPTI SHARMA, ALIND |
description | First-principles prediction of enhancement in the electrochemical potential of LiCoO
2
with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO
4
and LiCoPO
4
. Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO
2
, LiFePO
4
and LiCoPO
4
. While Al substitution for transition metal results in increase in electrochemical potential of LiCoO
2
, it leads to reduction in LiFePO
4
and LiCoPO
4
. Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO
2
, it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal–oxygen bond plays a key role in determining battery potential. |
doi_str_mv | 10.1007/s12034-014-0618-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1522656769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3297748801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e4b559b4d5b8e13047e4044c1f2b6f813710a25cb8c941a72a56aefa82b194243</originalsourceid><addsrcrecordid>eNp1ULlOxDAQjRBILMcH0FmiDtiOHSd0q9VySCvRQG05zoR4lcTBdhb273EUChqK0UzxjnkvSW4IviMYi3tPKM5YikmcnBRpeZKscCmyVOR5eRpvynHKBBbnyYX3e4xJyRhZJYdtBzo4q1vojVYdGm2AIRjVeWQb1KkjOKiR_TY1IDXEqzMHMwAaW-vHVgVAXya0SHVTb4apR36qfDBhCsYOD2iNGuN8QKMzgzZjBx75MNXHq-SsiRZw_bsvk_fH7dvmOd29Pr1s1rtUZ7wMKbCK87JiNa8KIBlmAhhmTJOGVnlTkEwQrCjXVaFLRpSgiucKGlXQKuajLLtMbhfd0dnPCXyQezu5IVpKwinNeS7yMqLIgtLOeu-gkfHfXrmjJFjO9cqlXhnrlXO9cubQhePnbB_g_ij_S_oBKJZ_WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522656769</pqid></control><display><type>article</type><title>Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study</title><source>Indian Academy of Sciences</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><source>ProQuest Central</source><creator>VARANASI, ARUN KUMAR ; SANAGAVARAPU, PHANI KANTH ; BHOWMIK, ARGHYA ; BHARADWAJ, MRIDULA DIXIT ; NARAYANA, BALASUBRAMANIAN ; WAGHMARE, UMESH V ; DEODHARE, DIPTI ; SHARMA, ALIND</creator><creatorcontrib>VARANASI, ARUN KUMAR ; SANAGAVARAPU, PHANI KANTH ; BHOWMIK, ARGHYA ; BHARADWAJ, MRIDULA DIXIT ; NARAYANA, BALASUBRAMANIAN ; WAGHMARE, UMESH V ; DEODHARE, DIPTI ; SHARMA, ALIND</creatorcontrib><description>First-principles prediction of enhancement in the electrochemical potential of LiCoO
2
with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO
4
and LiCoPO
4
. Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO
2
, LiFePO
4
and LiCoPO
4
. While Al substitution for transition metal results in increase in electrochemical potential of LiCoO
2
, it leads to reduction in LiFePO
4
and LiCoPO
4
. Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO
2
, it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal–oxygen bond plays a key role in determining battery potential.</description><identifier>ISSN: 0250-4707</identifier><identifier>EISSN: 0973-7669</identifier><identifier>DOI: 10.1007/s12034-014-0618-9</identifier><language>eng</language><publisher>India: Springer India</publisher><subject>Aluminum ; Approximation ; Charge density ; Charge materials ; Charge transfer ; Chemistry and Materials Science ; Cobalt ; Crystal structure ; Density functional theory ; Electrochemical potential ; Electrode materials ; Electrons ; Energy ; Engineering ; First principles ; Iron ; Lithium ; Lithium compounds ; Lithium-ion batteries ; Materials Science ; Olivine ; Oxygen ; Phosphates ; Principles ; Rechargeable batteries ; Simulation ; Substitutes ; Transition metals</subject><ispartof>Bulletin of materials science, 2013-12, Vol.36 (7), p.1331-1337</ispartof><rights>Indian Academy of Sciences 2014</rights><rights>Indian Academy of Sciences 2014.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e4b559b4d5b8e13047e4044c1f2b6f813710a25cb8c941a72a56aefa82b194243</citedby><cites>FETCH-LOGICAL-c359t-e4b559b4d5b8e13047e4044c1f2b6f813710a25cb8c941a72a56aefa82b194243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1522656769/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1522656769?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294,74045</link.rule.ids></links><search><creatorcontrib>VARANASI, ARUN KUMAR</creatorcontrib><creatorcontrib>SANAGAVARAPU, PHANI KANTH</creatorcontrib><creatorcontrib>BHOWMIK, ARGHYA</creatorcontrib><creatorcontrib>BHARADWAJ, MRIDULA DIXIT</creatorcontrib><creatorcontrib>NARAYANA, BALASUBRAMANIAN</creatorcontrib><creatorcontrib>WAGHMARE, UMESH V</creatorcontrib><creatorcontrib>DEODHARE, DIPTI</creatorcontrib><creatorcontrib>SHARMA, ALIND</creatorcontrib><title>Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study</title><title>Bulletin of materials science</title><addtitle>Bull Mater Sci</addtitle><description>First-principles prediction of enhancement in the electrochemical potential of LiCoO
2
with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO
4
and LiCoPO
4
. Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO
2
, LiFePO
4
and LiCoPO
4
. While Al substitution for transition metal results in increase in electrochemical potential of LiCoO
2
, it leads to reduction in LiFePO
4
and LiCoPO
4
. Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO
2
, it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal–oxygen bond plays a key role in determining battery potential.</description><subject>Aluminum</subject><subject>Approximation</subject><subject>Charge density</subject><subject>Charge materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>Electrochemical potential</subject><subject>Electrode materials</subject><subject>Electrons</subject><subject>Energy</subject><subject>Engineering</subject><subject>First principles</subject><subject>Iron</subject><subject>Lithium</subject><subject>Lithium compounds</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Olivine</subject><subject>Oxygen</subject><subject>Phosphates</subject><subject>Principles</subject><subject>Rechargeable batteries</subject><subject>Simulation</subject><subject>Substitutes</subject><subject>Transition metals</subject><issn>0250-4707</issn><issn>0973-7669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1ULlOxDAQjRBILMcH0FmiDtiOHSd0q9VySCvRQG05zoR4lcTBdhb273EUChqK0UzxjnkvSW4IviMYi3tPKM5YikmcnBRpeZKscCmyVOR5eRpvynHKBBbnyYX3e4xJyRhZJYdtBzo4q1vojVYdGm2AIRjVeWQb1KkjOKiR_TY1IDXEqzMHMwAaW-vHVgVAXya0SHVTb4apR36qfDBhCsYOD2iNGuN8QKMzgzZjBx75MNXHq-SsiRZw_bsvk_fH7dvmOd29Pr1s1rtUZ7wMKbCK87JiNa8KIBlmAhhmTJOGVnlTkEwQrCjXVaFLRpSgiucKGlXQKuajLLtMbhfd0dnPCXyQezu5IVpKwinNeS7yMqLIgtLOeu-gkfHfXrmjJFjO9cqlXhnrlXO9cubQhePnbB_g_ij_S_oBKJZ_WA</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>VARANASI, ARUN KUMAR</creator><creator>SANAGAVARAPU, PHANI KANTH</creator><creator>BHOWMIK, ARGHYA</creator><creator>BHARADWAJ, MRIDULA DIXIT</creator><creator>NARAYANA, BALASUBRAMANIAN</creator><creator>WAGHMARE, UMESH V</creator><creator>DEODHARE, DIPTI</creator><creator>SHARMA, ALIND</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20131201</creationdate><title>Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study</title><author>VARANASI, ARUN KUMAR ; SANAGAVARAPU, PHANI KANTH ; BHOWMIK, ARGHYA ; BHARADWAJ, MRIDULA DIXIT ; NARAYANA, BALASUBRAMANIAN ; WAGHMARE, UMESH V ; DEODHARE, DIPTI ; SHARMA, ALIND</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e4b559b4d5b8e13047e4044c1f2b6f813710a25cb8c941a72a56aefa82b194243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum</topic><topic>Approximation</topic><topic>Charge density</topic><topic>Charge materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>Electrochemical potential</topic><topic>Electrode materials</topic><topic>Electrons</topic><topic>Energy</topic><topic>Engineering</topic><topic>First principles</topic><topic>Iron</topic><topic>Lithium</topic><topic>Lithium compounds</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Olivine</topic><topic>Oxygen</topic><topic>Phosphates</topic><topic>Principles</topic><topic>Rechargeable batteries</topic><topic>Simulation</topic><topic>Substitutes</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VARANASI, ARUN KUMAR</creatorcontrib><creatorcontrib>SANAGAVARAPU, PHANI KANTH</creatorcontrib><creatorcontrib>BHOWMIK, ARGHYA</creatorcontrib><creatorcontrib>BHARADWAJ, MRIDULA DIXIT</creatorcontrib><creatorcontrib>NARAYANA, BALASUBRAMANIAN</creatorcontrib><creatorcontrib>WAGHMARE, UMESH V</creatorcontrib><creatorcontrib>DEODHARE, DIPTI</creatorcontrib><creatorcontrib>SHARMA, ALIND</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Bulletin of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VARANASI, ARUN KUMAR</au><au>SANAGAVARAPU, PHANI KANTH</au><au>BHOWMIK, ARGHYA</au><au>BHARADWAJ, MRIDULA DIXIT</au><au>NARAYANA, BALASUBRAMANIAN</au><au>WAGHMARE, UMESH V</au><au>DEODHARE, DIPTI</au><au>SHARMA, ALIND</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study</atitle><jtitle>Bulletin of materials science</jtitle><stitle>Bull Mater Sci</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>36</volume><issue>7</issue><spage>1331</spage><epage>1337</epage><pages>1331-1337</pages><issn>0250-4707</issn><eissn>0973-7669</eissn><abstract>First-principles prediction of enhancement in the electrochemical potential of LiCoO
2
with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO
4
and LiCoPO
4
. Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO
2
, LiFePO
4
and LiCoPO
4
. While Al substitution for transition metal results in increase in electrochemical potential of LiCoO
2
, it leads to reduction in LiFePO
4
and LiCoPO
4
. Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO
2
, it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal–oxygen bond plays a key role in determining battery potential.</abstract><cop>India</cop><pub>Springer India</pub><doi>10.1007/s12034-014-0618-9</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0250-4707 |
ispartof | Bulletin of materials science, 2013-12, Vol.36 (7), p.1331-1337 |
issn | 0250-4707 0973-7669 |
language | eng |
recordid | cdi_proquest_journals_1522656769 |
source | Indian Academy of Sciences; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry; ProQuest Central |
subjects | Aluminum Approximation Charge density Charge materials Charge transfer Chemistry and Materials Science Cobalt Crystal structure Density functional theory Electrochemical potential Electrode materials Electrons Energy Engineering First principles Iron Lithium Lithium compounds Lithium-ion batteries Materials Science Olivine Oxygen Phosphates Principles Rechargeable batteries Simulation Substitutes Transition metals |
title | Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20potentials%20of%20layered%20oxide%20and%20olivine%20phosphate%20with%20aluminum%20substitution:%20A%20first%20principles%20study&rft.jtitle=Bulletin%20of%20materials%20science&rft.au=VARANASI,%20ARUN%20KUMAR&rft.date=2013-12-01&rft.volume=36&rft.issue=7&rft.spage=1331&rft.epage=1337&rft.pages=1331-1337&rft.issn=0250-4707&rft.eissn=0973-7669&rft_id=info:doi/10.1007/s12034-014-0618-9&rft_dat=%3Cproquest_cross%3E3297748801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1522656769&rft_id=info:pmid/&rfr_iscdi=true |