Non-equilibrium chemistry and cooling in the diffuse interstellar medium – I. Optically thin regime

An accurate treatment of the multiphase interstellar medium (ISM) in hydrodynamic galaxy simulations requires that we follow not only the thermal evolution of the gas, but also the evolution of its chemical state, including its molecular chemistry, without assuming chemical (including ionization) eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2014-06, Vol.440 (4), p.3349-3369
Hauptverfasser: Richings, A. J., Schaye, J., Oppenheimer, B. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3369
container_issue 4
container_start_page 3349
container_title Monthly notices of the Royal Astronomical Society
container_volume 440
creator Richings, A. J.
Schaye, J.
Oppenheimer, B. D.
description An accurate treatment of the multiphase interstellar medium (ISM) in hydrodynamic galaxy simulations requires that we follow not only the thermal evolution of the gas, but also the evolution of its chemical state, including its molecular chemistry, without assuming chemical (including ionization) equilibrium. We present a reaction network that can be used to solve for this thermo-chemical evolution. Our model follows the evolution of all ionization states of the 11 elements that dominate the cooling rate, along with important molecules such as H2 and CO, and the intermediate molecular species that are involved in their formation (20 molecules in total). We include chemical reactions on dust grains, thermal processes involving dust, cosmic ray ionization and heating and photochemical reactions. We focus on conditions typical for the diffuse ISM, with densities of 10−2 cm−3≲ n H≲104 cm−3 and temperatures of 102 K ≲ T ≲ 104 K, and we consider a range of radiation fields, including no UV radiation. In this paper, we consider only gas that is optically thin, while paper II considers gas that becomes shielded from the radiation field. We verify the accuracy of our model by comparing chemical abundances and cooling functions in chemical equilibrium with the photoionization code cloudy. We identify the major coolants in diffuse interstellar gas to be C ii, Si ii and Fe ii, along with O i and H2 at densities n H ≳ 102 cm−3. Finally, we investigate the impact of non-equilibrium chemistry on the cooling functions of isochorically or isobarically cooling gas. We find that, at T 
doi_str_mv 10.1093/mnras/stu525
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_journals_1522310195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stu525</oup_id><sourcerecordid>3297216371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-d04f28d3a480b184d72bf4ccd618d83bbe98a23abb66dfd439c3d3254718be3e3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUQC0EEqWw8QGWGFhI60ecOiOqeFSq6AJz5MdN6yqv2s7QjX_gD_kSUsLMdHWlc-6VDkK3lMwoyfm8brwK8xB7wcQZmlCeiYTlWXaOJoRwkcgFpZfoKoQ9ISTlLJsgeGubBA69q5z2rq-x2UHtQvRHrBqLTdtWrtli1-C4A2xdWfYBhjWCDxGqSnlcgz2J359feDXDmy46o6rqOAiD5WHrarhGF6WqAtz8zSn6eH56X74m683Lavm4TgzP85hYkpZMWq5SSTSVqV0wXabG2IxKK7nWkEvFuNI6y2xpU54bbjkT6YJKDRz4FN2NdzvfHnoIsdi3vW-GlwUVjHFKaC4G6mGkjG9D8FAWnXe18seCkuIUsvgNWYwhB_x-xNu--5_8AUiAeC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522310195</pqid></control><display><type>article</type><title>Non-equilibrium chemistry and cooling in the diffuse interstellar medium – I. Optically thin regime</title><source>Open Access: Oxford University Press Open Journals</source><creator>Richings, A. J. ; Schaye, J. ; Oppenheimer, B. D.</creator><creatorcontrib>Richings, A. J. ; Schaye, J. ; Oppenheimer, B. D.</creatorcontrib><description>An accurate treatment of the multiphase interstellar medium (ISM) in hydrodynamic galaxy simulations requires that we follow not only the thermal evolution of the gas, but also the evolution of its chemical state, including its molecular chemistry, without assuming chemical (including ionization) equilibrium. We present a reaction network that can be used to solve for this thermo-chemical evolution. Our model follows the evolution of all ionization states of the 11 elements that dominate the cooling rate, along with important molecules such as H2 and CO, and the intermediate molecular species that are involved in their formation (20 molecules in total). We include chemical reactions on dust grains, thermal processes involving dust, cosmic ray ionization and heating and photochemical reactions. We focus on conditions typical for the diffuse ISM, with densities of 10−2 cm−3≲ n H≲104 cm−3 and temperatures of 102 K ≲ T ≲ 104 K, and we consider a range of radiation fields, including no UV radiation. In this paper, we consider only gas that is optically thin, while paper II considers gas that becomes shielded from the radiation field. We verify the accuracy of our model by comparing chemical abundances and cooling functions in chemical equilibrium with the photoionization code cloudy. We identify the major coolants in diffuse interstellar gas to be C ii, Si ii and Fe ii, along with O i and H2 at densities n H ≳ 102 cm−3. Finally, we investigate the impact of non-equilibrium chemistry on the cooling functions of isochorically or isobarically cooling gas. We find that, at T &lt; 104 K, recombination lags increase the electron abundance above its equilibrium value at a given temperature, which can enhance the cooling rate by up to two orders of magnitude. The cooling gas also shows lower H2 abundances than in equilibrium, by up to an order of magnitude.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stu525</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Aqueous chemical equilibrium ; Chemical reactions ; Fluid mechanics ; Gases ; Simulation ; Star &amp; galaxy formation</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2014-06, Vol.440 (4), p.3349-3369</ispartof><rights>2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2014</rights><rights>Copyright Oxford University Press, UK Jun 1, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-d04f28d3a480b184d72bf4ccd618d83bbe98a23abb66dfd439c3d3254718be3e3</citedby><cites>FETCH-LOGICAL-c399t-d04f28d3a480b184d72bf4ccd618d83bbe98a23abb66dfd439c3d3254718be3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1605,27929,27930</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stu525$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Richings, A. J.</creatorcontrib><creatorcontrib>Schaye, J.</creatorcontrib><creatorcontrib>Oppenheimer, B. D.</creatorcontrib><title>Non-equilibrium chemistry and cooling in the diffuse interstellar medium – I. Optically thin regime</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>An accurate treatment of the multiphase interstellar medium (ISM) in hydrodynamic galaxy simulations requires that we follow not only the thermal evolution of the gas, but also the evolution of its chemical state, including its molecular chemistry, without assuming chemical (including ionization) equilibrium. We present a reaction network that can be used to solve for this thermo-chemical evolution. Our model follows the evolution of all ionization states of the 11 elements that dominate the cooling rate, along with important molecules such as H2 and CO, and the intermediate molecular species that are involved in their formation (20 molecules in total). We include chemical reactions on dust grains, thermal processes involving dust, cosmic ray ionization and heating and photochemical reactions. We focus on conditions typical for the diffuse ISM, with densities of 10−2 cm−3≲ n H≲104 cm−3 and temperatures of 102 K ≲ T ≲ 104 K, and we consider a range of radiation fields, including no UV radiation. In this paper, we consider only gas that is optically thin, while paper II considers gas that becomes shielded from the radiation field. We verify the accuracy of our model by comparing chemical abundances and cooling functions in chemical equilibrium with the photoionization code cloudy. We identify the major coolants in diffuse interstellar gas to be C ii, Si ii and Fe ii, along with O i and H2 at densities n H ≳ 102 cm−3. Finally, we investigate the impact of non-equilibrium chemistry on the cooling functions of isochorically or isobarically cooling gas. We find that, at T &lt; 104 K, recombination lags increase the electron abundance above its equilibrium value at a given temperature, which can enhance the cooling rate by up to two orders of magnitude. The cooling gas also shows lower H2 abundances than in equilibrium, by up to an order of magnitude.</description><subject>Aqueous chemical equilibrium</subject><subject>Chemical reactions</subject><subject>Fluid mechanics</subject><subject>Gases</subject><subject>Simulation</subject><subject>Star &amp; galaxy formation</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUQC0EEqWw8QGWGFhI60ecOiOqeFSq6AJz5MdN6yqv2s7QjX_gD_kSUsLMdHWlc-6VDkK3lMwoyfm8brwK8xB7wcQZmlCeiYTlWXaOJoRwkcgFpZfoKoQ9ISTlLJsgeGubBA69q5z2rq-x2UHtQvRHrBqLTdtWrtli1-C4A2xdWfYBhjWCDxGqSnlcgz2J359feDXDmy46o6rqOAiD5WHrarhGF6WqAtz8zSn6eH56X74m683Lavm4TgzP85hYkpZMWq5SSTSVqV0wXabG2IxKK7nWkEvFuNI6y2xpU54bbjkT6YJKDRz4FN2NdzvfHnoIsdi3vW-GlwUVjHFKaC4G6mGkjG9D8FAWnXe18seCkuIUsvgNWYwhB_x-xNu--5_8AUiAeC0</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Richings, A. J.</creator><creator>Schaye, J.</creator><creator>Oppenheimer, B. D.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140601</creationdate><title>Non-equilibrium chemistry and cooling in the diffuse interstellar medium – I. Optically thin regime</title><author>Richings, A. J. ; Schaye, J. ; Oppenheimer, B. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-d04f28d3a480b184d72bf4ccd618d83bbe98a23abb66dfd439c3d3254718be3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aqueous chemical equilibrium</topic><topic>Chemical reactions</topic><topic>Fluid mechanics</topic><topic>Gases</topic><topic>Simulation</topic><topic>Star &amp; galaxy formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richings, A. J.</creatorcontrib><creatorcontrib>Schaye, J.</creatorcontrib><creatorcontrib>Oppenheimer, B. D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Richings, A. J.</au><au>Schaye, J.</au><au>Oppenheimer, B. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-equilibrium chemistry and cooling in the diffuse interstellar medium – I. Optically thin regime</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>440</volume><issue>4</issue><spage>3349</spage><epage>3369</epage><pages>3349-3369</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>An accurate treatment of the multiphase interstellar medium (ISM) in hydrodynamic galaxy simulations requires that we follow not only the thermal evolution of the gas, but also the evolution of its chemical state, including its molecular chemistry, without assuming chemical (including ionization) equilibrium. We present a reaction network that can be used to solve for this thermo-chemical evolution. Our model follows the evolution of all ionization states of the 11 elements that dominate the cooling rate, along with important molecules such as H2 and CO, and the intermediate molecular species that are involved in their formation (20 molecules in total). We include chemical reactions on dust grains, thermal processes involving dust, cosmic ray ionization and heating and photochemical reactions. We focus on conditions typical for the diffuse ISM, with densities of 10−2 cm−3≲ n H≲104 cm−3 and temperatures of 102 K ≲ T ≲ 104 K, and we consider a range of radiation fields, including no UV radiation. In this paper, we consider only gas that is optically thin, while paper II considers gas that becomes shielded from the radiation field. We verify the accuracy of our model by comparing chemical abundances and cooling functions in chemical equilibrium with the photoionization code cloudy. We identify the major coolants in diffuse interstellar gas to be C ii, Si ii and Fe ii, along with O i and H2 at densities n H ≳ 102 cm−3. Finally, we investigate the impact of non-equilibrium chemistry on the cooling functions of isochorically or isobarically cooling gas. We find that, at T &lt; 104 K, recombination lags increase the electron abundance above its equilibrium value at a given temperature, which can enhance the cooling rate by up to two orders of magnitude. The cooling gas also shows lower H2 abundances than in equilibrium, by up to an order of magnitude.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stu525</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2014-06, Vol.440 (4), p.3349-3369
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_1522310195
source Open Access: Oxford University Press Open Journals
subjects Aqueous chemical equilibrium
Chemical reactions
Fluid mechanics
Gases
Simulation
Star & galaxy formation
title Non-equilibrium chemistry and cooling in the diffuse interstellar medium – I. Optically thin regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T15%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-equilibrium%20chemistry%20and%20cooling%20in%20the%20diffuse%20interstellar%20medium%20%E2%80%93%20I.%20Optically%20thin%20regime&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Richings,%20A.%20J.&rft.date=2014-06-01&rft.volume=440&rft.issue=4&rft.spage=3349&rft.epage=3369&rft.pages=3349-3369&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stu525&rft_dat=%3Cproquest_TOX%3E3297216371%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1522310195&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stu525&rfr_iscdi=true