Person Explanatory Item Response Theory Analysis: Latent Regression Two Parameter Logistic Model

In this paper, the application of latent regression two-parameter logistic (2-PL) model as an explanatory item response model (EIRM) was illustrated using a part of TIMSS 2007 Science data for Turkey. For this purpose, initially item parameters were calculated via 2-PL IRT and latent regression 2-PL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Egitim ve Bilim 2013-04, Vol.38 (168)
Hauptverfasser: Atar, Burcu, Aktan, Derya Çobanoglu
Format: Artikel
Sprache:tur
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 168
container_start_page
container_title Egitim ve Bilim
container_volume 38
creator Atar, Burcu
Aktan, Derya Çobanoglu
description In this paper, the application of latent regression two-parameter logistic (2-PL) model as an explanatory item response model (EIRM) was illustrated using a part of TIMSS 2007 Science data for Turkey. For this purpose, initially item parameters were calculated via 2-PL IRT and latent regression 2-PL models. Then, in the latent regression 2-PL model, the effects of gender, positive affect toward science, valuing science, self-confidence in learning science, and education level of parents as person properties on the student achievement were examined. It was seen that among those properties only self confidence in learning science and education level of parents had a statistically significant effects on explaining the differences in students' achievements. Based on fit indices, it was found that latent regression 2-PL model had a better model fit to data than 2-PL IRT model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1521710428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3296047801</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-8065b84c91c0e9cc1db622a3b784f71c6a372470e8f92c839d22e4603e5d99ce3</originalsourceid><addsrcrecordid>eNotj1FLwzAUhfOg4Jj7DwGfC7lJ2yS-jTF1UHFIfZ5pejc7uqbmZuj-vRV9OnA43-GcKzYDJUQGSukbtiA6CiFAaAm6nLH3LUYKA19_j70bXArxwjcJT_wVaQwDIa8_8NdcDq6_UEf3vHIJhzQFDhGJugmuvwLfuuhOmDDyKhw6Sp3nz6HF_pZd711PuPjXOXt7WNerp6x6edysllU2AqiUGVEWjcm9BS_Qeg9tU0rpVKNNvtfgS6e0zLVAs7fSG2VbKTEvhcKitdajmrO7v94xhs8zUtodwzlOo2kHxfQVRC6N-gG0EFB3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1521710428</pqid></control><display><type>article</type><title>Person Explanatory Item Response Theory Analysis: Latent Regression Two Parameter Logistic Model</title><source>EBSCOhost Education Source</source><creator>Atar, Burcu ; Aktan, Derya Çobanoglu</creator><creatorcontrib>Atar, Burcu ; Aktan, Derya Çobanoglu</creatorcontrib><description>In this paper, the application of latent regression two-parameter logistic (2-PL) model as an explanatory item response model (EIRM) was illustrated using a part of TIMSS 2007 Science data for Turkey. For this purpose, initially item parameters were calculated via 2-PL IRT and latent regression 2-PL models. Then, in the latent regression 2-PL model, the effects of gender, positive affect toward science, valuing science, self-confidence in learning science, and education level of parents as person properties on the student achievement were examined. It was seen that among those properties only self confidence in learning science and education level of parents had a statistically significant effects on explaining the differences in students' achievements. Based on fit indices, it was found that latent regression 2-PL model had a better model fit to data than 2-PL IRT model.</description><identifier>ISSN: 1300-1337</identifier><language>tur</language><publisher>Ankara: Turk Egitim Dernegi</publisher><subject>Academic Achievement ; Gender Discrimination ; Item Response Theory ; Logistics ; Parameter estimation ; Regression analysis ; Science Achievement ; Science Instruction</subject><ispartof>Egitim ve Bilim, 2013-04, Vol.38 (168)</ispartof><rights>Copyright Turk Egitim Dernegi 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Atar, Burcu</creatorcontrib><creatorcontrib>Aktan, Derya Çobanoglu</creatorcontrib><title>Person Explanatory Item Response Theory Analysis: Latent Regression Two Parameter Logistic Model</title><title>Egitim ve Bilim</title><description>In this paper, the application of latent regression two-parameter logistic (2-PL) model as an explanatory item response model (EIRM) was illustrated using a part of TIMSS 2007 Science data for Turkey. For this purpose, initially item parameters were calculated via 2-PL IRT and latent regression 2-PL models. Then, in the latent regression 2-PL model, the effects of gender, positive affect toward science, valuing science, self-confidence in learning science, and education level of parents as person properties on the student achievement were examined. It was seen that among those properties only self confidence in learning science and education level of parents had a statistically significant effects on explaining the differences in students' achievements. Based on fit indices, it was found that latent regression 2-PL model had a better model fit to data than 2-PL IRT model.</description><subject>Academic Achievement</subject><subject>Gender Discrimination</subject><subject>Item Response Theory</subject><subject>Logistics</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>Science Achievement</subject><subject>Science Instruction</subject><issn>1300-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotj1FLwzAUhfOg4Jj7DwGfC7lJ2yS-jTF1UHFIfZ5pejc7uqbmZuj-vRV9OnA43-GcKzYDJUQGSukbtiA6CiFAaAm6nLH3LUYKA19_j70bXArxwjcJT_wVaQwDIa8_8NdcDq6_UEf3vHIJhzQFDhGJugmuvwLfuuhOmDDyKhw6Sp3nz6HF_pZd711PuPjXOXt7WNerp6x6edysllU2AqiUGVEWjcm9BS_Qeg9tU0rpVKNNvtfgS6e0zLVAs7fSG2VbKTEvhcKitdajmrO7v94xhs8zUtodwzlOo2kHxfQVRC6N-gG0EFB3</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Atar, Burcu</creator><creator>Aktan, Derya Çobanoglu</creator><general>Turk Egitim Dernegi</general><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M0P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20130401</creationdate><title>Person Explanatory Item Response Theory Analysis: Latent Regression Two Parameter Logistic Model</title><author>Atar, Burcu ; Aktan, Derya Çobanoglu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-8065b84c91c0e9cc1db622a3b784f71c6a372470e8f92c839d22e4603e5d99ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>tur</language><creationdate>2013</creationdate><topic>Academic Achievement</topic><topic>Gender Discrimination</topic><topic>Item Response Theory</topic><topic>Logistics</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>Science Achievement</topic><topic>Science Instruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atar, Burcu</creatorcontrib><creatorcontrib>Aktan, Derya Çobanoglu</creatorcontrib><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Turkey Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Education Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Egitim ve Bilim</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atar, Burcu</au><au>Aktan, Derya Çobanoglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Person Explanatory Item Response Theory Analysis: Latent Regression Two Parameter Logistic Model</atitle><jtitle>Egitim ve Bilim</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>38</volume><issue>168</issue><issn>1300-1337</issn><abstract>In this paper, the application of latent regression two-parameter logistic (2-PL) model as an explanatory item response model (EIRM) was illustrated using a part of TIMSS 2007 Science data for Turkey. For this purpose, initially item parameters were calculated via 2-PL IRT and latent regression 2-PL models. Then, in the latent regression 2-PL model, the effects of gender, positive affect toward science, valuing science, self-confidence in learning science, and education level of parents as person properties on the student achievement were examined. It was seen that among those properties only self confidence in learning science and education level of parents had a statistically significant effects on explaining the differences in students' achievements. Based on fit indices, it was found that latent regression 2-PL model had a better model fit to data than 2-PL IRT model.</abstract><cop>Ankara</cop><pub>Turk Egitim Dernegi</pub></addata></record>
fulltext fulltext
identifier ISSN: 1300-1337
ispartof Egitim ve Bilim, 2013-04, Vol.38 (168)
issn 1300-1337
language tur
recordid cdi_proquest_journals_1521710428
source EBSCOhost Education Source
subjects Academic Achievement
Gender Discrimination
Item Response Theory
Logistics
Parameter estimation
Regression analysis
Science Achievement
Science Instruction
title Person Explanatory Item Response Theory Analysis: Latent Regression Two Parameter Logistic Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Person%20Explanatory%20Item%20Response%20Theory%20Analysis:%20Latent%20Regression%20Two%20Parameter%20Logistic%20Model&rft.jtitle=Egitim%20ve%20Bilim&rft.au=Atar,%20Burcu&rft.date=2013-04-01&rft.volume=38&rft.issue=168&rft.issn=1300-1337&rft_id=info:doi/&rft_dat=%3Cproquest%3E3296047801%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1521710428&rft_id=info:pmid/&rfr_iscdi=true