Research on High Speed Cutting Parameter Optimization and Fault Diagnosis Technology
High speed cutting process is a very complicated process; cutting parameters have a significant effect on cutting process and play a key role in the process of product manufacturing. The overall scheme of high speed cutting parameter optimization and its fault diagnosis have been introduced. The mat...
Gespeichert in:
Veröffentlicht in: | Advances in Mechanical Engineering 2014-01, Vol.6, p.281216 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 281216 |
container_title | Advances in Mechanical Engineering |
container_volume | 6 |
creator | Zhou, Honggen Jing, Xuwen Wang, Lei Dai, Kaiyun Yongpeng, Jia |
description | High speed cutting process is a very complicated process; cutting parameters have a significant effect on cutting process and play a key role in the process of product manufacturing. The overall scheme of high speed cutting parameter optimization and its fault diagnosis have been introduced. The mathematical model of the selected cutting parameters was established and the optimized parameters were obtained by combining the experimental design with the technology of data processing. The statistical description of high speed cutting process control was introduced and the fault diagnosis model of cutting parameter optimization by using the neural network was proposed. Finally, the mathematical model in the present study is validated with a numerical example. The results show that the present method solved the problem of poor universality of high speed cutting data effectively and avoided the inaccuracy of physical and chemical mechanism research. Meanwhile, the present study prevents the passive checks of the cutting and gets better diagnosis of the complicated cutting fault type. |
doi_str_mv | 10.1155/2014/281216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_1521046770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1155_2014/281216</sage_id><doaj_id>oai_doaj_org_article_774afededa664bf7a61b21ea07498fc7</doaj_id><sourcerecordid>3294785941</sourcerecordid><originalsourceid>FETCH-LOGICAL-a466t-f9be056464f991b734278ba2a5448dbb0c141b94fae653f3940cd6f603c775a23</originalsourceid><addsrcrecordid>eNptkU1LAzEQhhdRsFRP_oGAF0GqSTab7B6lflQoKFrPYbI72aa0m5qkB_31rq4UD57mZXh4ZuDNsjNGrxgrimtOmbjmJeNMHmQjJks1KZmgh_uc8-PsNEZnaEElpbKqRtniBSNCqJfEd2Tm2iV53SI2ZLpLyXUteYYAG0wYyNM2uY37hOR6ErqG3MNuncitg7bz0UWywHrZ-bVvP06yIwvriKe_c5y93d8tprPJ_OnhcXozn4CQMk1sZZAWUkhhq4oZlQuuSgMcCiHKxhhaM8FMJSygLHKbV4LWjbSS5rVSBfB8nD0O3sbDSm-D20D40B6c_ln40GoIydVr1EoJsNhgA1IKYxVIZjhDoEpUpa1V7zofXNvg33cYk175Xej69zUrOKNCKkV76nKg6uBjDGj3VxnV3y3o7xb00EJPXwx0hBb_-P5BvwCrdIR1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1521046770</pqid></control><display><type>article</type><title>Research on High Speed Cutting Parameter Optimization and Fault Diagnosis Technology</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Honggen ; Jing, Xuwen ; Wang, Lei ; Dai, Kaiyun ; Yongpeng, Jia</creator><creatorcontrib>Zhou, Honggen ; Jing, Xuwen ; Wang, Lei ; Dai, Kaiyun ; Yongpeng, Jia</creatorcontrib><description>High speed cutting process is a very complicated process; cutting parameters have a significant effect on cutting process and play a key role in the process of product manufacturing. The overall scheme of high speed cutting parameter optimization and its fault diagnosis have been introduced. The mathematical model of the selected cutting parameters was established and the optimized parameters were obtained by combining the experimental design with the technology of data processing. The statistical description of high speed cutting process control was introduced and the fault diagnosis model of cutting parameter optimization by using the neural network was proposed. Finally, the mathematical model in the present study is validated with a numerical example. The results show that the present method solved the problem of poor universality of high speed cutting data effectively and avoided the inaccuracy of physical and chemical mechanism research. Meanwhile, the present study prevents the passive checks of the cutting and gets better diagnosis of the complicated cutting fault type.</description><identifier>ISSN: 1687-8132</identifier><identifier>ISSN: 1687-8140</identifier><identifier>EISSN: 1687-8140</identifier><identifier>EISSN: 1687-8132</identifier><identifier>DOI: 10.1155/2014/281216</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Fault diagnosis ; Quality control ; Statistical process control ; Studies</subject><ispartof>Advances in Mechanical Engineering, 2014-01, Vol.6, p.281216</ispartof><rights>2014 Honggen Zhou et al.</rights><rights>Copyright © 2014 Honggen Zhou et al. Honggen Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a466t-f9be056464f991b734278ba2a5448dbb0c141b94fae653f3940cd6f603c775a23</citedby><cites>FETCH-LOGICAL-a466t-f9be056464f991b734278ba2a5448dbb0c141b94fae653f3940cd6f603c775a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1155/2014/281216$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1155/2014/281216$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,21947,27834,27905,27906,44926,45314</link.rule.ids></links><search><creatorcontrib>Zhou, Honggen</creatorcontrib><creatorcontrib>Jing, Xuwen</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Dai, Kaiyun</creatorcontrib><creatorcontrib>Yongpeng, Jia</creatorcontrib><title>Research on High Speed Cutting Parameter Optimization and Fault Diagnosis Technology</title><title>Advances in Mechanical Engineering</title><description>High speed cutting process is a very complicated process; cutting parameters have a significant effect on cutting process and play a key role in the process of product manufacturing. The overall scheme of high speed cutting parameter optimization and its fault diagnosis have been introduced. The mathematical model of the selected cutting parameters was established and the optimized parameters were obtained by combining the experimental design with the technology of data processing. The statistical description of high speed cutting process control was introduced and the fault diagnosis model of cutting parameter optimization by using the neural network was proposed. Finally, the mathematical model in the present study is validated with a numerical example. The results show that the present method solved the problem of poor universality of high speed cutting data effectively and avoided the inaccuracy of physical and chemical mechanism research. Meanwhile, the present study prevents the passive checks of the cutting and gets better diagnosis of the complicated cutting fault type.</description><subject>Fault diagnosis</subject><subject>Quality control</subject><subject>Statistical process control</subject><subject>Studies</subject><issn>1687-8132</issn><issn>1687-8140</issn><issn>1687-8140</issn><issn>1687-8132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1LAzEQhhdRsFRP_oGAF0GqSTab7B6lflQoKFrPYbI72aa0m5qkB_31rq4UD57mZXh4ZuDNsjNGrxgrimtOmbjmJeNMHmQjJks1KZmgh_uc8-PsNEZnaEElpbKqRtniBSNCqJfEd2Tm2iV53SI2ZLpLyXUteYYAG0wYyNM2uY37hOR6ErqG3MNuncitg7bz0UWywHrZ-bVvP06yIwvriKe_c5y93d8tprPJ_OnhcXozn4CQMk1sZZAWUkhhq4oZlQuuSgMcCiHKxhhaM8FMJSygLHKbV4LWjbSS5rVSBfB8nD0O3sbDSm-D20D40B6c_ln40GoIydVr1EoJsNhgA1IKYxVIZjhDoEpUpa1V7zofXNvg33cYk175Xej69zUrOKNCKkV76nKg6uBjDGj3VxnV3y3o7xb00EJPXwx0hBb_-P5BvwCrdIR1</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Zhou, Honggen</creator><creator>Jing, Xuwen</creator><creator>Wang, Lei</creator><creator>Dai, Kaiyun</creator><creator>Yongpeng, Jia</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Research on High Speed Cutting Parameter Optimization and Fault Diagnosis Technology</title><author>Zhou, Honggen ; Jing, Xuwen ; Wang, Lei ; Dai, Kaiyun ; Yongpeng, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a466t-f9be056464f991b734278ba2a5448dbb0c141b94fae653f3940cd6f603c775a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Fault diagnosis</topic><topic>Quality control</topic><topic>Statistical process control</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Honggen</creatorcontrib><creatorcontrib>Jing, Xuwen</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Dai, Kaiyun</creatorcontrib><creatorcontrib>Yongpeng, Jia</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Honggen</au><au>Jing, Xuwen</au><au>Wang, Lei</au><au>Dai, Kaiyun</au><au>Yongpeng, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on High Speed Cutting Parameter Optimization and Fault Diagnosis Technology</atitle><jtitle>Advances in Mechanical Engineering</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>6</volume><spage>281216</spage><pages>281216-</pages><issn>1687-8132</issn><issn>1687-8140</issn><eissn>1687-8140</eissn><eissn>1687-8132</eissn><abstract>High speed cutting process is a very complicated process; cutting parameters have a significant effect on cutting process and play a key role in the process of product manufacturing. The overall scheme of high speed cutting parameter optimization and its fault diagnosis have been introduced. The mathematical model of the selected cutting parameters was established and the optimized parameters were obtained by combining the experimental design with the technology of data processing. The statistical description of high speed cutting process control was introduced and the fault diagnosis model of cutting parameter optimization by using the neural network was proposed. Finally, the mathematical model in the present study is validated with a numerical example. The results show that the present method solved the problem of poor universality of high speed cutting data effectively and avoided the inaccuracy of physical and chemical mechanism research. Meanwhile, the present study prevents the passive checks of the cutting and gets better diagnosis of the complicated cutting fault type.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1155/2014/281216</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-8132 |
ispartof | Advances in Mechanical Engineering, 2014-01, Vol.6, p.281216 |
issn | 1687-8132 1687-8140 1687-8140 1687-8132 |
language | eng |
recordid | cdi_proquest_journals_1521046770 |
source | DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Fault diagnosis Quality control Statistical process control Studies |
title | Research on High Speed Cutting Parameter Optimization and Fault Diagnosis Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20High%20Speed%20Cutting%20Parameter%20Optimization%20and%20Fault%20Diagnosis%20Technology&rft.jtitle=Advances%20in%20Mechanical%20Engineering&rft.au=Zhou,%20Honggen&rft.date=2014-01-01&rft.volume=6&rft.spage=281216&rft.pages=281216-&rft.issn=1687-8132&rft.eissn=1687-8140&rft_id=info:doi/10.1155/2014/281216&rft_dat=%3Cproquest_doaj_%3E3294785941%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1521046770&rft_id=info:pmid/&rft_sage_id=10.1155_2014/281216&rft_doaj_id=oai_doaj_org_article_774afededa664bf7a61b21ea07498fc7&rfr_iscdi=true |