An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type
We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exp...
Gespeichert in:
Veröffentlicht in: | Funkcialaj Ekvacioj 2014, Vol.57(1), pp.1-41 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Funkcialaj Ekvacioj |
container_volume | 57 |
creator | Ando, Hisashi Hay, Mike Kajiwara, Kenji Masuda, Tetsu |
description | We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exponent. However, we show that one can extend the value of the exponent to arbitrary complex numbers except even integers and the domain to a discrete analogue of the Riemann surface. Moreover, we show that the discrete power function is an immersion when the real part of the exponent is equal to one. |
doi_str_mv | 10.1619/fesi.57.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1520853927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3294277141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-4504acb7e6830030e84455f2d8829b3ff14809608f7538911029b2ae548cc35f3</originalsourceid><addsrcrecordid>eNpF0EtLAzEQAOAcFKzVg_8g4MlDax6bbha8lNqqIChYzyFNJ27K7mZNstT-e7esj8sMDB_zQuiKkimd0eLWQnRTkU_pCRoRwdlE5oyeofMYd4RwJggbITNv8PKrrZxxCa98qLtKY-sDTiXgexdNgAT41e8h4FXXmOR8g-cxeuN0gi3eu1TihQum6pVOCUITsbf4zZRB1zVeH1q4QKdWVxEuf_IYva-W68Xj5Pnl4Wkxf56YjNI0yQTJtNnkMJO834-AzDIhLNtKyYoNt5ZmkhQzIm0uuCwoJX2ZaRCZNIYLy8foeujbBv_ZQUxq57vQ9CMVFYxIwQuW9-pmUCb4GANY1QZX63BQlKjj39Txb0rkivb2brC7mPQH_Ekdkusv_pdD-C2bUgcFDf8GN8R4CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520853927</pqid></control><display><type>article</type><title>An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ando, Hisashi ; Hay, Mike ; Kajiwara, Kenji ; Masuda, Tetsu</creator><creatorcontrib>Ando, Hisashi ; Hay, Mike ; Kajiwara, Kenji ; Masuda, Tetsu</creatorcontrib><description>We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exponent. However, we show that one can extend the value of the exponent to arbitrary complex numbers except even integers and the domain to a discrete analogue of the Riemann surface. Moreover, we show that the discrete power function is an immersion when the real part of the exponent is equal to one.</description><identifier>ISSN: 0532-8721</identifier><identifier>DOI: 10.1619/fesi.57.1</identifier><language>eng</language><publisher>Tokyo: Division of Functional Equations, The Mathematical Society of Japan</publisher><subject>Circle patterns ; Discrete conformal mapping ; Discrete differential geometry ; Hypergeometric function ; Painlevé VI equation</subject><ispartof>Funkcialaj Ekvacioj, 2014, Vol.57(1), pp.1-41</ispartof><rights>2014 by the Division of Functional Equations, The Mathematical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-4504acb7e6830030e84455f2d8829b3ff14809608f7538911029b2ae548cc35f3</citedby><cites>FETCH-LOGICAL-c411t-4504acb7e6830030e84455f2d8829b3ff14809608f7538911029b2ae548cc35f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Ando, Hisashi</creatorcontrib><creatorcontrib>Hay, Mike</creatorcontrib><creatorcontrib>Kajiwara, Kenji</creatorcontrib><creatorcontrib>Masuda, Tetsu</creatorcontrib><title>An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type</title><title>Funkcialaj Ekvacioj</title><addtitle>FE</addtitle><description>We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exponent. However, we show that one can extend the value of the exponent to arbitrary complex numbers except even integers and the domain to a discrete analogue of the Riemann surface. Moreover, we show that the discrete power function is an immersion when the real part of the exponent is equal to one.</description><subject>Circle patterns</subject><subject>Discrete conformal mapping</subject><subject>Discrete differential geometry</subject><subject>Hypergeometric function</subject><subject>Painlevé VI equation</subject><issn>0532-8721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpF0EtLAzEQAOAcFKzVg_8g4MlDax6bbha8lNqqIChYzyFNJ27K7mZNstT-e7esj8sMDB_zQuiKkimd0eLWQnRTkU_pCRoRwdlE5oyeofMYd4RwJggbITNv8PKrrZxxCa98qLtKY-sDTiXgexdNgAT41e8h4FXXmOR8g-cxeuN0gi3eu1TihQum6pVOCUITsbf4zZRB1zVeH1q4QKdWVxEuf_IYva-W68Xj5Pnl4Wkxf56YjNI0yQTJtNnkMJO834-AzDIhLNtKyYoNt5ZmkhQzIm0uuCwoJX2ZaRCZNIYLy8foeujbBv_ZQUxq57vQ9CMVFYxIwQuW9-pmUCb4GANY1QZX63BQlKjj39Txb0rkivb2brC7mPQH_Ekdkusv_pdD-C2bUgcFDf8GN8R4CQ</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Ando, Hisashi</creator><creator>Hay, Mike</creator><creator>Kajiwara, Kenji</creator><creator>Masuda, Tetsu</creator><general>Division of Functional Equations, The Mathematical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2014</creationdate><title>An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type</title><author>Ando, Hisashi ; Hay, Mike ; Kajiwara, Kenji ; Masuda, Tetsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-4504acb7e6830030e84455f2d8829b3ff14809608f7538911029b2ae548cc35f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Circle patterns</topic><topic>Discrete conformal mapping</topic><topic>Discrete differential geometry</topic><topic>Hypergeometric function</topic><topic>Painlevé VI equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ando, Hisashi</creatorcontrib><creatorcontrib>Hay, Mike</creatorcontrib><creatorcontrib>Kajiwara, Kenji</creatorcontrib><creatorcontrib>Masuda, Tetsu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Funkcialaj Ekvacioj</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ando, Hisashi</au><au>Hay, Mike</au><au>Kajiwara, Kenji</au><au>Masuda, Tetsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type</atitle><jtitle>Funkcialaj Ekvacioj</jtitle><addtitle>FE</addtitle><date>2014</date><risdate>2014</risdate><volume>57</volume><issue>1</issue><spage>1</spage><epage>41</epage><pages>1-41</pages><issn>0532-8721</issn><abstract>We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exponent. However, we show that one can extend the value of the exponent to arbitrary complex numbers except even integers and the domain to a discrete analogue of the Riemann surface. Moreover, we show that the discrete power function is an immersion when the real part of the exponent is equal to one.</abstract><cop>Tokyo</cop><pub>Division of Functional Equations, The Mathematical Society of Japan</pub><doi>10.1619/fesi.57.1</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0532-8721 |
ispartof | Funkcialaj Ekvacioj, 2014, Vol.57(1), pp.1-41 |
issn | 0532-8721 |
language | eng |
recordid | cdi_proquest_journals_1520853927 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Circle patterns Discrete conformal mapping Discrete differential geometry Hypergeometric function Painlevé VI equation |
title | An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Explicit%20Formula%20for%20the%20Discrete%20Power%20Function%20Associated%20with%20Circle%20Patterns%20of%20Schramm%20Type&rft.jtitle=Funkcialaj%20Ekvacioj&rft.au=Ando,%20Hisashi&rft.date=2014&rft.volume=57&rft.issue=1&rft.spage=1&rft.epage=41&rft.pages=1-41&rft.issn=0532-8721&rft_id=info:doi/10.1619/fesi.57.1&rft_dat=%3Cproquest_cross%3E3294277141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520853927&rft_id=info:pmid/&rfr_iscdi=true |