An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type

We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Funkcialaj Ekvacioj 2014, Vol.57(1), pp.1-41
Hauptverfasser: Ando, Hisashi, Hay, Mike, Kajiwara, Kenji, Masuda, Tetsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 1
container_title Funkcialaj Ekvacioj
container_volume 57
creator Ando, Hisashi
Hay, Mike
Kajiwara, Kenji
Masuda, Tetsu
description We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exponent. However, we show that one can extend the value of the exponent to arbitrary complex numbers except even integers and the domain to a discrete analogue of the Riemann surface. Moreover, we show that the discrete power function is an immersion when the real part of the exponent is equal to one.
doi_str_mv 10.1619/fesi.57.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1520853927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3294277141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-4504acb7e6830030e84455f2d8829b3ff14809608f7538911029b2ae548cc35f3</originalsourceid><addsrcrecordid>eNpF0EtLAzEQAOAcFKzVg_8g4MlDax6bbha8lNqqIChYzyFNJ27K7mZNstT-e7esj8sMDB_zQuiKkimd0eLWQnRTkU_pCRoRwdlE5oyeofMYd4RwJggbITNv8PKrrZxxCa98qLtKY-sDTiXgexdNgAT41e8h4FXXmOR8g-cxeuN0gi3eu1TihQum6pVOCUITsbf4zZRB1zVeH1q4QKdWVxEuf_IYva-W68Xj5Pnl4Wkxf56YjNI0yQTJtNnkMJO834-AzDIhLNtKyYoNt5ZmkhQzIm0uuCwoJX2ZaRCZNIYLy8foeujbBv_ZQUxq57vQ9CMVFYxIwQuW9-pmUCb4GANY1QZX63BQlKjj39Txb0rkivb2brC7mPQH_Ekdkusv_pdD-C2bUgcFDf8GN8R4CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520853927</pqid></control><display><type>article</type><title>An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ando, Hisashi ; Hay, Mike ; Kajiwara, Kenji ; Masuda, Tetsu</creator><creatorcontrib>Ando, Hisashi ; Hay, Mike ; Kajiwara, Kenji ; Masuda, Tetsu</creatorcontrib><description>We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exponent. However, we show that one can extend the value of the exponent to arbitrary complex numbers except even integers and the domain to a discrete analogue of the Riemann surface. Moreover, we show that the discrete power function is an immersion when the real part of the exponent is equal to one.</description><identifier>ISSN: 0532-8721</identifier><identifier>DOI: 10.1619/fesi.57.1</identifier><language>eng</language><publisher>Tokyo: Division of Functional Equations, The Mathematical Society of Japan</publisher><subject>Circle patterns ; Discrete conformal mapping ; Discrete differential geometry ; Hypergeometric function ; Painlevé VI equation</subject><ispartof>Funkcialaj Ekvacioj, 2014, Vol.57(1), pp.1-41</ispartof><rights>2014 by the Division of Functional Equations, The Mathematical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-4504acb7e6830030e84455f2d8829b3ff14809608f7538911029b2ae548cc35f3</citedby><cites>FETCH-LOGICAL-c411t-4504acb7e6830030e84455f2d8829b3ff14809608f7538911029b2ae548cc35f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Ando, Hisashi</creatorcontrib><creatorcontrib>Hay, Mike</creatorcontrib><creatorcontrib>Kajiwara, Kenji</creatorcontrib><creatorcontrib>Masuda, Tetsu</creatorcontrib><title>An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type</title><title>Funkcialaj Ekvacioj</title><addtitle>FE</addtitle><description>We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exponent. However, we show that one can extend the value of the exponent to arbitrary complex numbers except even integers and the domain to a discrete analogue of the Riemann surface. Moreover, we show that the discrete power function is an immersion when the real part of the exponent is equal to one.</description><subject>Circle patterns</subject><subject>Discrete conformal mapping</subject><subject>Discrete differential geometry</subject><subject>Hypergeometric function</subject><subject>Painlevé VI equation</subject><issn>0532-8721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpF0EtLAzEQAOAcFKzVg_8g4MlDax6bbha8lNqqIChYzyFNJ27K7mZNstT-e7esj8sMDB_zQuiKkimd0eLWQnRTkU_pCRoRwdlE5oyeofMYd4RwJggbITNv8PKrrZxxCa98qLtKY-sDTiXgexdNgAT41e8h4FXXmOR8g-cxeuN0gi3eu1TihQum6pVOCUITsbf4zZRB1zVeH1q4QKdWVxEuf_IYva-W68Xj5Pnl4Wkxf56YjNI0yQTJtNnkMJO834-AzDIhLNtKyYoNt5ZmkhQzIm0uuCwoJX2ZaRCZNIYLy8foeujbBv_ZQUxq57vQ9CMVFYxIwQuW9-pmUCb4GANY1QZX63BQlKjj39Txb0rkivb2brC7mPQH_Ekdkusv_pdD-C2bUgcFDf8GN8R4CQ</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Ando, Hisashi</creator><creator>Hay, Mike</creator><creator>Kajiwara, Kenji</creator><creator>Masuda, Tetsu</creator><general>Division of Functional Equations, The Mathematical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2014</creationdate><title>An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type</title><author>Ando, Hisashi ; Hay, Mike ; Kajiwara, Kenji ; Masuda, Tetsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-4504acb7e6830030e84455f2d8829b3ff14809608f7538911029b2ae548cc35f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Circle patterns</topic><topic>Discrete conformal mapping</topic><topic>Discrete differential geometry</topic><topic>Hypergeometric function</topic><topic>Painlevé VI equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ando, Hisashi</creatorcontrib><creatorcontrib>Hay, Mike</creatorcontrib><creatorcontrib>Kajiwara, Kenji</creatorcontrib><creatorcontrib>Masuda, Tetsu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Funkcialaj Ekvacioj</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ando, Hisashi</au><au>Hay, Mike</au><au>Kajiwara, Kenji</au><au>Masuda, Tetsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type</atitle><jtitle>Funkcialaj Ekvacioj</jtitle><addtitle>FE</addtitle><date>2014</date><risdate>2014</risdate><volume>57</volume><issue>1</issue><spage>1</spage><epage>41</epage><pages>1-41</pages><issn>0532-8721</issn><abstract>We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exponent. However, we show that one can extend the value of the exponent to arbitrary complex numbers except even integers and the domain to a discrete analogue of the Riemann surface. Moreover, we show that the discrete power function is an immersion when the real part of the exponent is equal to one.</abstract><cop>Tokyo</cop><pub>Division of Functional Equations, The Mathematical Society of Japan</pub><doi>10.1619/fesi.57.1</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0532-8721
ispartof Funkcialaj Ekvacioj, 2014, Vol.57(1), pp.1-41
issn 0532-8721
language eng
recordid cdi_proquest_journals_1520853927
source EZB-FREE-00999 freely available EZB journals
subjects Circle patterns
Discrete conformal mapping
Discrete differential geometry
Hypergeometric function
Painlevé VI equation
title An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Explicit%20Formula%20for%20the%20Discrete%20Power%20Function%20Associated%20with%20Circle%20Patterns%20of%20Schramm%20Type&rft.jtitle=Funkcialaj%20Ekvacioj&rft.au=Ando,%20Hisashi&rft.date=2014&rft.volume=57&rft.issue=1&rft.spage=1&rft.epage=41&rft.pages=1-41&rft.issn=0532-8721&rft_id=info:doi/10.1619/fesi.57.1&rft_dat=%3Cproquest_cross%3E3294277141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520853927&rft_id=info:pmid/&rfr_iscdi=true