Assessing seawater quality with a variable fuzzy recognition model

With the rapid development of the marine economy industry, human exploitation of marine resources is increasing, which is contributing to the growing trend of eutrophication and frequent occurrence of red tide. Accordingly, investigations of seawater quality have attracted a great deal of attention....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of oceanology and limnology 2014-05, Vol.32 (3), p.645-655
1. Verfasser: 柯丽娜 王权明 盖美 周惠成
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 655
container_issue 3
container_start_page 645
container_title Chinese journal of oceanology and limnology
container_volume 32
creator 柯丽娜 王权明 盖美 周惠成
description With the rapid development of the marine economy industry, human exploitation of marine resources is increasing, which is contributing to the growing trend of eutrophication and frequent occurrence of red tide. Accordingly, investigations of seawater quality have attracted a great deal of attention. This study was conducted to construct a seawater environmental quality assessment model based on the variable fuzzy recognition model. The uncertainty and ambiguity of the seawater quality assessment were then considered, combining the monitoring values of evaluation indicators with the standard values of seawater quality. Laizhou Bay was subsequently selected for a case study. In this study, the correct variable model for different parameters was obtained according to the linear and nonlinear features of evaluation objects. Application of the variable fuzzy recognition model for Laizhou Bay, water quality evaluation and comparison with performance obtained using other approaches revealed that the generated model is more reliable than traditional methods, can more reasonably determine the water quality of various samples, and is more suitable for evaluation of a multi-index, multi-level, nonlinear marine environment system; accordingly, the generated model will be an effective tool for seawater quality evaluation.
doi_str_mv 10.1007/s00343-014-3117-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1520554821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>49516331</cqvip_id><sourcerecordid>3292282121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-15eb7fc2c411e56b268414db69e5b7217b0748d53f2eaab763e5863acd1769383</originalsourceid><addsrcrecordid>eNp9kEtP3DAUhS0EUgfKD-iKVN10k_ZeP-J4CagvCYkFsLaczE0wysSMnYCGX1-PgirUBYuru_m-o6PD2CeEbwigvycAIUUJKEuBqEtxwFZojCgVgDpkK-BKlhKU-cCOU3rItJFgVuziPCVKyY99kcg9u4lisZ3d4Kdd8eyn-8IVTy561wxUdPPLy66I1IZ-9JMPY7EJaxo-sqPODYlOX_8Ju_v54_byd3l1_evP5flV2QpjphIVNbpreSsRSVUNr2qJct1UhlSjOeoGtKzXSnScnGt0JUjVlXDtGnVlRC1O2Ncl9zGG7UxpshufWhoGN1KYk0XFpUQBIDP65T_0IcxxzO32FCgla46ZwoVqY0gpUmcfo9-4uLMIdr-qXVa1eVW7X9WK7PDFSZkde4pvkt-Rzhapc8G6Pvpk7254BiCfqfW-yufXKvdh7Lc5-V8XaRRWQqD4C4-pjQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520554821</pqid></control><display><type>article</type><title>Assessing seawater quality with a variable fuzzy recognition model</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>Springer Online Journals Complete</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>柯丽娜 王权明 盖美 周惠成</creator><creatorcontrib>柯丽娜 王权明 盖美 周惠成</creatorcontrib><description>With the rapid development of the marine economy industry, human exploitation of marine resources is increasing, which is contributing to the growing trend of eutrophication and frequent occurrence of red tide. Accordingly, investigations of seawater quality have attracted a great deal of attention. This study was conducted to construct a seawater environmental quality assessment model based on the variable fuzzy recognition model. The uncertainty and ambiguity of the seawater quality assessment were then considered, combining the monitoring values of evaluation indicators with the standard values of seawater quality. Laizhou Bay was subsequently selected for a case study. In this study, the correct variable model for different parameters was obtained according to the linear and nonlinear features of evaluation objects. Application of the variable fuzzy recognition model for Laizhou Bay, water quality evaluation and comparison with performance obtained using other approaches revealed that the generated model is more reliable than traditional methods, can more reasonably determine the water quality of various samples, and is more suitable for evaluation of a multi-index, multi-level, nonlinear marine environment system; accordingly, the generated model will be an effective tool for seawater quality evaluation.</description><identifier>ISSN: 0254-4059</identifier><identifier>ISSN: 2096-5508</identifier><identifier>EISSN: 1993-5005</identifier><identifier>EISSN: 2523-3521</identifier><identifier>DOI: 10.1007/s00343-014-3117-3</identifier><language>eng</language><publisher>Heidelberg: Springer-Verlag</publisher><subject>algal blooms ; Bays ; case studies ; Chemical analysis ; Earth and Environmental Science ; Earth Sciences ; Economic development ; Environmental quality ; Environmental quality assessment ; Eutrophication ; Evaluation ; humans ; industry ; Marine ; Marine conservation ; Marine environment ; Marine resources ; monitoring ; Oceanography ; Physics ; Quality assessment ; Quality control ; Red tide ; Red tides ; Seawater ; uncertainty ; Underwater resources ; Water analysis ; Water quality ; 可变 ; 模型评价 ; 模糊识别模型 ; 水体富营养化 ; 海水水质 ; 海洋经济 ; 质量评价模型 ; 非线性特性</subject><ispartof>Chinese journal of oceanology and limnology, 2014-05, Vol.32 (3), p.645-655</ispartof><rights>Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-15eb7fc2c411e56b268414db69e5b7217b0748d53f2eaab763e5863acd1769383</citedby><cites>FETCH-LOGICAL-c399t-15eb7fc2c411e56b268414db69e5b7217b0748d53f2eaab763e5863acd1769383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84119X/84119X.jpg</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1520554821/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1520554821?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,21387,21388,21389,23254,27922,27923,33528,33701,33742,34003,34312,43657,43785,43803,43951,44065,64383,64387,72239,73874,74053,74072,74243,74360</link.rule.ids></links><search><creatorcontrib>柯丽娜 王权明 盖美 周惠成</creatorcontrib><title>Assessing seawater quality with a variable fuzzy recognition model</title><title>Chinese journal of oceanology and limnology</title><addtitle>Chin. J. Ocean. Limnol</addtitle><addtitle>Chinese Journal of Oceanology and Limnology</addtitle><description>With the rapid development of the marine economy industry, human exploitation of marine resources is increasing, which is contributing to the growing trend of eutrophication and frequent occurrence of red tide. Accordingly, investigations of seawater quality have attracted a great deal of attention. This study was conducted to construct a seawater environmental quality assessment model based on the variable fuzzy recognition model. The uncertainty and ambiguity of the seawater quality assessment were then considered, combining the monitoring values of evaluation indicators with the standard values of seawater quality. Laizhou Bay was subsequently selected for a case study. In this study, the correct variable model for different parameters was obtained according to the linear and nonlinear features of evaluation objects. Application of the variable fuzzy recognition model for Laizhou Bay, water quality evaluation and comparison with performance obtained using other approaches revealed that the generated model is more reliable than traditional methods, can more reasonably determine the water quality of various samples, and is more suitable for evaluation of a multi-index, multi-level, nonlinear marine environment system; accordingly, the generated model will be an effective tool for seawater quality evaluation.</description><subject>algal blooms</subject><subject>Bays</subject><subject>case studies</subject><subject>Chemical analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Economic development</subject><subject>Environmental quality</subject><subject>Environmental quality assessment</subject><subject>Eutrophication</subject><subject>Evaluation</subject><subject>humans</subject><subject>industry</subject><subject>Marine</subject><subject>Marine conservation</subject><subject>Marine environment</subject><subject>Marine resources</subject><subject>monitoring</subject><subject>Oceanography</subject><subject>Physics</subject><subject>Quality assessment</subject><subject>Quality control</subject><subject>Red tide</subject><subject>Red tides</subject><subject>Seawater</subject><subject>uncertainty</subject><subject>Underwater resources</subject><subject>Water analysis</subject><subject>Water quality</subject><subject>可变</subject><subject>模型评价</subject><subject>模糊识别模型</subject><subject>水体富营养化</subject><subject>海水水质</subject><subject>海洋经济</subject><subject>质量评价模型</subject><subject>非线性特性</subject><issn>0254-4059</issn><issn>2096-5508</issn><issn>1993-5005</issn><issn>2523-3521</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtP3DAUhS0EUgfKD-iKVN10k_ZeP-J4CagvCYkFsLaczE0wysSMnYCGX1-PgirUBYuru_m-o6PD2CeEbwigvycAIUUJKEuBqEtxwFZojCgVgDpkK-BKlhKU-cCOU3rItJFgVuziPCVKyY99kcg9u4lisZ3d4Kdd8eyn-8IVTy561wxUdPPLy66I1IZ-9JMPY7EJaxo-sqPODYlOX_8Ju_v54_byd3l1_evP5flV2QpjphIVNbpreSsRSVUNr2qJct1UhlSjOeoGtKzXSnScnGt0JUjVlXDtGnVlRC1O2Ncl9zGG7UxpshufWhoGN1KYk0XFpUQBIDP65T_0IcxxzO32FCgla46ZwoVqY0gpUmcfo9-4uLMIdr-qXVa1eVW7X9WK7PDFSZkde4pvkt-Rzhapc8G6Pvpk7254BiCfqfW-yufXKvdh7Lc5-V8XaRRWQqD4C4-pjQg</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>柯丽娜 王权明 盖美 周惠成</creator><general>Springer-Verlag</general><general>Science Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>M7N</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7ST</scope><scope>7TG</scope><scope>7TV</scope><scope>8FD</scope><scope>FR3</scope><scope>H97</scope><scope>H99</scope><scope>KL.</scope><scope>L.F</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20140501</creationdate><title>Assessing seawater quality with a variable fuzzy recognition model</title><author>柯丽娜 王权明 盖美 周惠成</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-15eb7fc2c411e56b268414db69e5b7217b0748d53f2eaab763e5863acd1769383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>algal blooms</topic><topic>Bays</topic><topic>case studies</topic><topic>Chemical analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Economic development</topic><topic>Environmental quality</topic><topic>Environmental quality assessment</topic><topic>Eutrophication</topic><topic>Evaluation</topic><topic>humans</topic><topic>industry</topic><topic>Marine</topic><topic>Marine conservation</topic><topic>Marine environment</topic><topic>Marine resources</topic><topic>monitoring</topic><topic>Oceanography</topic><topic>Physics</topic><topic>Quality assessment</topic><topic>Quality control</topic><topic>Red tide</topic><topic>Red tides</topic><topic>Seawater</topic><topic>uncertainty</topic><topic>Underwater resources</topic><topic>Water analysis</topic><topic>Water quality</topic><topic>可变</topic><topic>模型评价</topic><topic>模糊识别模型</topic><topic>水体富营养化</topic><topic>海水水质</topic><topic>海洋经济</topic><topic>质量评价模型</topic><topic>非线性特性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>柯丽娜 王权明 盖美 周惠成</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Chinese journal of oceanology and limnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>柯丽娜 王权明 盖美 周惠成</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing seawater quality with a variable fuzzy recognition model</atitle><jtitle>Chinese journal of oceanology and limnology</jtitle><stitle>Chin. J. Ocean. Limnol</stitle><addtitle>Chinese Journal of Oceanology and Limnology</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>32</volume><issue>3</issue><spage>645</spage><epage>655</epage><pages>645-655</pages><issn>0254-4059</issn><issn>2096-5508</issn><eissn>1993-5005</eissn><eissn>2523-3521</eissn><abstract>With the rapid development of the marine economy industry, human exploitation of marine resources is increasing, which is contributing to the growing trend of eutrophication and frequent occurrence of red tide. Accordingly, investigations of seawater quality have attracted a great deal of attention. This study was conducted to construct a seawater environmental quality assessment model based on the variable fuzzy recognition model. The uncertainty and ambiguity of the seawater quality assessment were then considered, combining the monitoring values of evaluation indicators with the standard values of seawater quality. Laizhou Bay was subsequently selected for a case study. In this study, the correct variable model for different parameters was obtained according to the linear and nonlinear features of evaluation objects. Application of the variable fuzzy recognition model for Laizhou Bay, water quality evaluation and comparison with performance obtained using other approaches revealed that the generated model is more reliable than traditional methods, can more reasonably determine the water quality of various samples, and is more suitable for evaluation of a multi-index, multi-level, nonlinear marine environment system; accordingly, the generated model will be an effective tool for seawater quality evaluation.</abstract><cop>Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00343-014-3117-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-4059
ispartof Chinese journal of oceanology and limnology, 2014-05, Vol.32 (3), p.645-655
issn 0254-4059
2096-5508
1993-5005
2523-3521
language eng
recordid cdi_proquest_journals_1520554821
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); Springer Online Journals Complete; ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects algal blooms
Bays
case studies
Chemical analysis
Earth and Environmental Science
Earth Sciences
Economic development
Environmental quality
Environmental quality assessment
Eutrophication
Evaluation
humans
industry
Marine
Marine conservation
Marine environment
Marine resources
monitoring
Oceanography
Physics
Quality assessment
Quality control
Red tide
Red tides
Seawater
uncertainty
Underwater resources
Water analysis
Water quality
可变
模型评价
模糊识别模型
水体富营养化
海水水质
海洋经济
质量评价模型
非线性特性
title Assessing seawater quality with a variable fuzzy recognition model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20seawater%20quality%20with%20a%20variable%20fuzzy%20recognition%20model&rft.jtitle=Chinese%20journal%20of%20oceanology%20and%20limnology&rft.au=%E6%9F%AF%E4%B8%BD%E5%A8%9C%20%E7%8E%8B%E6%9D%83%E6%98%8E%20%E7%9B%96%E7%BE%8E%20%E5%91%A8%E6%83%A0%E6%88%90&rft.date=2014-05-01&rft.volume=32&rft.issue=3&rft.spage=645&rft.epage=655&rft.pages=645-655&rft.issn=0254-4059&rft.eissn=1993-5005&rft_id=info:doi/10.1007/s00343-014-3117-3&rft_dat=%3Cproquest_cross%3E3292282121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520554821&rft_id=info:pmid/&rft_cqvip_id=49516331&rfr_iscdi=true