A C0 finite element method for the biharmonic problem without extrinsic penalization
A symmetric C 0 finite element method for the biharmonic problem is constructed and analyzed. In our approach, we introduce one‐sided discrete second‐order derivatives and Hessian matrices to formulate our scheme. We show that the method is stable and converge with optimal order in a variety of norm...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2014-07, Vol.30 (4), p.1254-1278 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1278 |
---|---|
container_issue | 4 |
container_start_page | 1254 |
container_title | Numerical methods for partial differential equations |
container_volume | 30 |
creator | Gazi Karakoc, S. Battal Neilan, Michael |
description | A symmetric C
0 finite element method for the biharmonic problem is constructed and analyzed. In our approach, we introduce one‐sided discrete second‐order derivatives and Hessian matrices to formulate our scheme. We show that the method is stable and converge with optimal order in a variety of norms. A distinctive feature of the method is that the results hold without extrinsic penalization of the gradient across interelement boundaries. Numerical experiments are given that support the theoretical results, and the extension to Kirchhoff plates is also discussed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1254–1278, 2014 |
doi_str_mv | 10.1002/num.21868 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1519048455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3285632091</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1068-4e12053416f96ac4d114bda047f8244c552b0feaa107faaa755ebf35deb3b8743</originalsourceid><addsrcrecordid>eNo9kF9PwjAUxRujiYg--A2a-Dy53dp1eyRE0QQxIkTfmo7dhuL-YNcF8NM7wPh0b3J_5-acQ8gtg3sGEA6qtrwPWRInZ6THIE2CkIfxOemB5GnARPp5Sa6aZg3AmGBpj8yHdATU2Mp6pFhgiZWnJfpVnVNTO-pXSDO70q6sK7ukG1dnHUS3tiNaT3Hnna2awwUrXdgf7W1dXZMLo4sGb_5mnyweH-ajp2DyOn4eDSeBZRAnAUcWgog4i00a6yXPGeNZroFLk4ScL4UIMzCoNQNptNZSCMxMJHLMoiyRPOqTu9PfztZ3i41X67p1nY9GHdIBT7gQHTU4UVtb4F5tnC212ysG6tCY6hpTx8bUdPFyXDpFcFLYxuPuX6Hdl4plJIX6mI7V21iy2ewd1Dj6BUGNcAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1519048455</pqid></control><display><type>article</type><title>A C0 finite element method for the biharmonic problem without extrinsic penalization</title><source>Wiley Journals</source><creator>Gazi Karakoc, S. Battal ; Neilan, Michael</creator><creatorcontrib>Gazi Karakoc, S. Battal ; Neilan, Michael</creatorcontrib><description>A symmetric C
0 finite element method for the biharmonic problem is constructed and analyzed. In our approach, we introduce one‐sided discrete second‐order derivatives and Hessian matrices to formulate our scheme. We show that the method is stable and converge with optimal order in a variety of norms. A distinctive feature of the method is that the results hold without extrinsic penalization of the gradient across interelement boundaries. Numerical experiments are given that support the theoretical results, and the extension to Kirchhoff plates is also discussed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1254–1278, 2014</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.21868</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>biharmonic ; convergence analysis ; finite element</subject><ispartof>Numerical methods for partial differential equations, 2014-07, Vol.30 (4), p.1254-1278</ispartof><rights>Copyright © 2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.21868$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.21868$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gazi Karakoc, S. Battal</creatorcontrib><creatorcontrib>Neilan, Michael</creatorcontrib><title>A C0 finite element method for the biharmonic problem without extrinsic penalization</title><title>Numerical methods for partial differential equations</title><addtitle>Numer. Methods Partial Differential Eq</addtitle><description>A symmetric C
0 finite element method for the biharmonic problem is constructed and analyzed. In our approach, we introduce one‐sided discrete second‐order derivatives and Hessian matrices to formulate our scheme. We show that the method is stable and converge with optimal order in a variety of norms. A distinctive feature of the method is that the results hold without extrinsic penalization of the gradient across interelement boundaries. Numerical experiments are given that support the theoretical results, and the extension to Kirchhoff plates is also discussed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1254–1278, 2014</description><subject>biharmonic</subject><subject>convergence analysis</subject><subject>finite element</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kF9PwjAUxRujiYg--A2a-Dy53dp1eyRE0QQxIkTfmo7dhuL-YNcF8NM7wPh0b3J_5-acQ8gtg3sGEA6qtrwPWRInZ6THIE2CkIfxOemB5GnARPp5Sa6aZg3AmGBpj8yHdATU2Mp6pFhgiZWnJfpVnVNTO-pXSDO70q6sK7ukG1dnHUS3tiNaT3Hnna2awwUrXdgf7W1dXZMLo4sGb_5mnyweH-ajp2DyOn4eDSeBZRAnAUcWgog4i00a6yXPGeNZroFLk4ScL4UIMzCoNQNptNZSCMxMJHLMoiyRPOqTu9PfztZ3i41X67p1nY9GHdIBT7gQHTU4UVtb4F5tnC212ysG6tCY6hpTx8bUdPFyXDpFcFLYxuPuX6Hdl4plJIX6mI7V21iy2ewd1Dj6BUGNcAE</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Gazi Karakoc, S. Battal</creator><creator>Neilan, Michael</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201407</creationdate><title>A C0 finite element method for the biharmonic problem without extrinsic penalization</title><author>Gazi Karakoc, S. Battal ; Neilan, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1068-4e12053416f96ac4d114bda047f8244c552b0feaa107faaa755ebf35deb3b8743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>biharmonic</topic><topic>convergence analysis</topic><topic>finite element</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gazi Karakoc, S. Battal</creatorcontrib><creatorcontrib>Neilan, Michael</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gazi Karakoc, S. Battal</au><au>Neilan, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A C0 finite element method for the biharmonic problem without extrinsic penalization</atitle><jtitle>Numerical methods for partial differential equations</jtitle><addtitle>Numer. Methods Partial Differential Eq</addtitle><date>2014-07</date><risdate>2014</risdate><volume>30</volume><issue>4</issue><spage>1254</spage><epage>1278</epage><pages>1254-1278</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>A symmetric C
0 finite element method for the biharmonic problem is constructed and analyzed. In our approach, we introduce one‐sided discrete second‐order derivatives and Hessian matrices to formulate our scheme. We show that the method is stable and converge with optimal order in a variety of norms. A distinctive feature of the method is that the results hold without extrinsic penalization of the gradient across interelement boundaries. Numerical experiments are given that support the theoretical results, and the extension to Kirchhoff plates is also discussed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1254–1278, 2014</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/num.21868</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2014-07, Vol.30 (4), p.1254-1278 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_journals_1519048455 |
source | Wiley Journals |
subjects | biharmonic convergence analysis finite element |
title | A C0 finite element method for the biharmonic problem without extrinsic penalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20C0%20finite%20element%20method%20for%20the%20biharmonic%20problem%20without%20extrinsic%20penalization&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Gazi%20Karakoc,%20S.%20Battal&rft.date=2014-07&rft.volume=30&rft.issue=4&rft.spage=1254&rft.epage=1278&rft.pages=1254-1278&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.21868&rft_dat=%3Cproquest_wiley%3E3285632091%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1519048455&rft_id=info:pmid/&rfr_iscdi=true |