A C0 finite element method for the biharmonic problem without extrinsic penalization

A symmetric C 0 finite element method for the biharmonic problem is constructed and analyzed. In our approach, we introduce one‐sided discrete second‐order derivatives and Hessian matrices to formulate our scheme. We show that the method is stable and converge with optimal order in a variety of norm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2014-07, Vol.30 (4), p.1254-1278
Hauptverfasser: Gazi Karakoc, S. Battal, Neilan, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1278
container_issue 4
container_start_page 1254
container_title Numerical methods for partial differential equations
container_volume 30
creator Gazi Karakoc, S. Battal
Neilan, Michael
description A symmetric C 0 finite element method for the biharmonic problem is constructed and analyzed. In our approach, we introduce one‐sided discrete second‐order derivatives and Hessian matrices to formulate our scheme. We show that the method is stable and converge with optimal order in a variety of norms. A distinctive feature of the method is that the results hold without extrinsic penalization of the gradient across interelement boundaries. Numerical experiments are given that support the theoretical results, and the extension to Kirchhoff plates is also discussed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1254–1278, 2014
doi_str_mv 10.1002/num.21868
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1519048455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3285632091</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1068-4e12053416f96ac4d114bda047f8244c552b0feaa107faaa755ebf35deb3b8743</originalsourceid><addsrcrecordid>eNo9kF9PwjAUxRujiYg--A2a-Dy53dp1eyRE0QQxIkTfmo7dhuL-YNcF8NM7wPh0b3J_5-acQ8gtg3sGEA6qtrwPWRInZ6THIE2CkIfxOemB5GnARPp5Sa6aZg3AmGBpj8yHdATU2Mp6pFhgiZWnJfpVnVNTO-pXSDO70q6sK7ukG1dnHUS3tiNaT3Hnna2awwUrXdgf7W1dXZMLo4sGb_5mnyweH-ajp2DyOn4eDSeBZRAnAUcWgog4i00a6yXPGeNZroFLk4ScL4UIMzCoNQNptNZSCMxMJHLMoiyRPOqTu9PfztZ3i41X67p1nY9GHdIBT7gQHTU4UVtb4F5tnC212ysG6tCY6hpTx8bUdPFyXDpFcFLYxuPuX6Hdl4plJIX6mI7V21iy2ewd1Dj6BUGNcAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1519048455</pqid></control><display><type>article</type><title>A C0 finite element method for the biharmonic problem without extrinsic penalization</title><source>Wiley Journals</source><creator>Gazi Karakoc, S. Battal ; Neilan, Michael</creator><creatorcontrib>Gazi Karakoc, S. Battal ; Neilan, Michael</creatorcontrib><description>A symmetric C 0 finite element method for the biharmonic problem is constructed and analyzed. In our approach, we introduce one‐sided discrete second‐order derivatives and Hessian matrices to formulate our scheme. We show that the method is stable and converge with optimal order in a variety of norms. A distinctive feature of the method is that the results hold without extrinsic penalization of the gradient across interelement boundaries. Numerical experiments are given that support the theoretical results, and the extension to Kirchhoff plates is also discussed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1254–1278, 2014</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.21868</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>biharmonic ; convergence analysis ; finite element</subject><ispartof>Numerical methods for partial differential equations, 2014-07, Vol.30 (4), p.1254-1278</ispartof><rights>Copyright © 2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.21868$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.21868$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gazi Karakoc, S. Battal</creatorcontrib><creatorcontrib>Neilan, Michael</creatorcontrib><title>A C0 finite element method for the biharmonic problem without extrinsic penalization</title><title>Numerical methods for partial differential equations</title><addtitle>Numer. Methods Partial Differential Eq</addtitle><description>A symmetric C 0 finite element method for the biharmonic problem is constructed and analyzed. In our approach, we introduce one‐sided discrete second‐order derivatives and Hessian matrices to formulate our scheme. We show that the method is stable and converge with optimal order in a variety of norms. A distinctive feature of the method is that the results hold without extrinsic penalization of the gradient across interelement boundaries. Numerical experiments are given that support the theoretical results, and the extension to Kirchhoff plates is also discussed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1254–1278, 2014</description><subject>biharmonic</subject><subject>convergence analysis</subject><subject>finite element</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kF9PwjAUxRujiYg--A2a-Dy53dp1eyRE0QQxIkTfmo7dhuL-YNcF8NM7wPh0b3J_5-acQ8gtg3sGEA6qtrwPWRInZ6THIE2CkIfxOemB5GnARPp5Sa6aZg3AmGBpj8yHdATU2Mp6pFhgiZWnJfpVnVNTO-pXSDO70q6sK7ukG1dnHUS3tiNaT3Hnna2awwUrXdgf7W1dXZMLo4sGb_5mnyweH-ajp2DyOn4eDSeBZRAnAUcWgog4i00a6yXPGeNZroFLk4ScL4UIMzCoNQNptNZSCMxMJHLMoiyRPOqTu9PfztZ3i41X67p1nY9GHdIBT7gQHTU4UVtb4F5tnC212ysG6tCY6hpTx8bUdPFyXDpFcFLYxuPuX6Hdl4plJIX6mI7V21iy2ewd1Dj6BUGNcAE</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Gazi Karakoc, S. Battal</creator><creator>Neilan, Michael</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201407</creationdate><title>A C0 finite element method for the biharmonic problem without extrinsic penalization</title><author>Gazi Karakoc, S. Battal ; Neilan, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1068-4e12053416f96ac4d114bda047f8244c552b0feaa107faaa755ebf35deb3b8743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>biharmonic</topic><topic>convergence analysis</topic><topic>finite element</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gazi Karakoc, S. Battal</creatorcontrib><creatorcontrib>Neilan, Michael</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gazi Karakoc, S. Battal</au><au>Neilan, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A C0 finite element method for the biharmonic problem without extrinsic penalization</atitle><jtitle>Numerical methods for partial differential equations</jtitle><addtitle>Numer. Methods Partial Differential Eq</addtitle><date>2014-07</date><risdate>2014</risdate><volume>30</volume><issue>4</issue><spage>1254</spage><epage>1278</epage><pages>1254-1278</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>A symmetric C 0 finite element method for the biharmonic problem is constructed and analyzed. In our approach, we introduce one‐sided discrete second‐order derivatives and Hessian matrices to formulate our scheme. We show that the method is stable and converge with optimal order in a variety of norms. A distinctive feature of the method is that the results hold without extrinsic penalization of the gradient across interelement boundaries. Numerical experiments are given that support the theoretical results, and the extension to Kirchhoff plates is also discussed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1254–1278, 2014</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/num.21868</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2014-07, Vol.30 (4), p.1254-1278
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_1519048455
source Wiley Journals
subjects biharmonic
convergence analysis
finite element
title A C0 finite element method for the biharmonic problem without extrinsic penalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20C0%20finite%20element%20method%20for%20the%20biharmonic%20problem%20without%20extrinsic%20penalization&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Gazi%20Karakoc,%20S.%20Battal&rft.date=2014-07&rft.volume=30&rft.issue=4&rft.spage=1254&rft.epage=1278&rft.pages=1254-1278&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.21868&rft_dat=%3Cproquest_wiley%3E3285632091%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1519048455&rft_id=info:pmid/&rfr_iscdi=true