The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots

This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of physical chemistry 2014-01, Vol.65 (1), p.317-339
Hauptverfasser: Peterson, Mark D, Cass, Laura C, Harris, Rachel D, Edme, Kedy, Sung, Kimberly, Weiss, Emily A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 1
container_start_page 317
container_title Annual review of physical chemistry
container_volume 65
creator Peterson, Mark D
Cass, Laura C
Harris, Rachel D
Edme, Kedy
Sung, Kimberly
Weiss, Emily A
description This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determines the competition between Auger relaxation and electronic-to-vibrational energy transfer in the intraband cooling of hot carriers, and between electron or hole-trapping processes and radiative recombination in relaxation of band-edge excitons. The latter competition determines the photoluminescence quantum yield of the nanocrystals, which is predictable through a set of mostly phenomenological models that link the surface coverage of ligands with specific chemical properties to the rate constants for nonradiative exciton decay.
doi_str_mv 10.1146/annurev-physchem-040513-103649
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1518983406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3285313771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-fc93eaf68ae26bf896364a8684228e461d4e8e6a188da7c3cead43e95a90f60d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlb_ggQEb6vJJptmL4IUv6DgpYK3mCaz7ZZu0iZZaf-9W7d6mvfwzDvDg9AtJXeUcnGvnWsDfGeb5T6aJTQZ4aSgLKOECV6eoCEteJHRomSnaEiIEBnPxecAXcS4IoSUjOfnaJDzA03FEH3NloCDXwP2FV7XC-1sxLXDFhKEpna1W-DUIbAzdfIOB1jrnU51F-3e6aY2v3iELnlnW5N8wNtWu9Q22PoUL9FZpdcRro5zhD6en2aT12z6_vI2eZxmho_HKatMyUBXQmrIxbySpeg-1FJInucSuKCWgwShqZRWjw0zoC1nUBa6JJUglo3QTd-7CX7bQkxq5dvgupOKFlSWknEiOuqhp0zwMQao1CbUjQ57RYk6CFZHwepPsOoFq15wV3B9PNPOG7D_639G2Q_i2n7x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518983406</pqid></control><display><type>article</type><title>The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots</title><source>Annual Reviews</source><source>MEDLINE</source><creator>Peterson, Mark D ; Cass, Laura C ; Harris, Rachel D ; Edme, Kedy ; Sung, Kimberly ; Weiss, Emily A</creator><creatorcontrib>Peterson, Mark D ; Cass, Laura C ; Harris, Rachel D ; Edme, Kedy ; Sung, Kimberly ; Weiss, Emily A</creatorcontrib><description>This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determines the competition between Auger relaxation and electronic-to-vibrational energy transfer in the intraband cooling of hot carriers, and between electron or hole-trapping processes and radiative recombination in relaxation of band-edge excitons. The latter competition determines the photoluminescence quantum yield of the nanocrystals, which is predictable through a set of mostly phenomenological models that link the surface coverage of ligands with specific chemical properties to the rate constants for nonradiative exciton decay.</description><identifier>ISSN: 0066-426X</identifier><identifier>EISSN: 1545-1593</identifier><identifier>DOI: 10.1146/annurev-physchem-040513-103649</identifier><identifier>PMID: 24364916</identifier><identifier>CODEN: ARPLAP</identifier><language>eng</language><publisher>United States: Annual Reviews, Inc</publisher><subject>Chemical properties ; Chemistry ; Electrons ; Energy transfer ; Ligands ; Luminescence ; Nanocrystals ; Nanoparticles - chemistry ; Nanostructured materials ; Quantum dots ; Quantum Dots - chemistry ; Semiconductors ; Surface chemistry ; Surface Properties</subject><ispartof>Annual review of physical chemistry, 2014-01, Vol.65 (1), p.317-339</ispartof><rights>Copyright Annual Reviews, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-fc93eaf68ae26bf896364a8684228e461d4e8e6a188da7c3cead43e95a90f60d3</citedby><cites>FETCH-LOGICAL-c477t-fc93eaf68ae26bf896364a8684228e461d4e8e6a188da7c3cead43e95a90f60d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4183,27925,27926</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24364916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peterson, Mark D</creatorcontrib><creatorcontrib>Cass, Laura C</creatorcontrib><creatorcontrib>Harris, Rachel D</creatorcontrib><creatorcontrib>Edme, Kedy</creatorcontrib><creatorcontrib>Sung, Kimberly</creatorcontrib><creatorcontrib>Weiss, Emily A</creatorcontrib><title>The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots</title><title>Annual review of physical chemistry</title><addtitle>Annu Rev Phys Chem</addtitle><description>This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determines the competition between Auger relaxation and electronic-to-vibrational energy transfer in the intraband cooling of hot carriers, and between electron or hole-trapping processes and radiative recombination in relaxation of band-edge excitons. The latter competition determines the photoluminescence quantum yield of the nanocrystals, which is predictable through a set of mostly phenomenological models that link the surface coverage of ligands with specific chemical properties to the rate constants for nonradiative exciton decay.</description><subject>Chemical properties</subject><subject>Chemistry</subject><subject>Electrons</subject><subject>Energy transfer</subject><subject>Ligands</subject><subject>Luminescence</subject><subject>Nanocrystals</subject><subject>Nanoparticles - chemistry</subject><subject>Nanostructured materials</subject><subject>Quantum dots</subject><subject>Quantum Dots - chemistry</subject><subject>Semiconductors</subject><subject>Surface chemistry</subject><subject>Surface Properties</subject><issn>0066-426X</issn><issn>1545-1593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1LAzEQhoMotlb_ggQEb6vJJptmL4IUv6DgpYK3mCaz7ZZu0iZZaf-9W7d6mvfwzDvDg9AtJXeUcnGvnWsDfGeb5T6aJTQZ4aSgLKOECV6eoCEteJHRomSnaEiIEBnPxecAXcS4IoSUjOfnaJDzA03FEH3NloCDXwP2FV7XC-1sxLXDFhKEpna1W-DUIbAzdfIOB1jrnU51F-3e6aY2v3iELnlnW5N8wNtWu9Q22PoUL9FZpdcRro5zhD6en2aT12z6_vI2eZxmho_HKatMyUBXQmrIxbySpeg-1FJInucSuKCWgwShqZRWjw0zoC1nUBa6JJUglo3QTd-7CX7bQkxq5dvgupOKFlSWknEiOuqhp0zwMQao1CbUjQ57RYk6CFZHwepPsOoFq15wV3B9PNPOG7D_639G2Q_i2n7x</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Peterson, Mark D</creator><creator>Cass, Laura C</creator><creator>Harris, Rachel D</creator><creator>Edme, Kedy</creator><creator>Sung, Kimberly</creator><creator>Weiss, Emily A</creator><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20140101</creationdate><title>The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots</title><author>Peterson, Mark D ; Cass, Laura C ; Harris, Rachel D ; Edme, Kedy ; Sung, Kimberly ; Weiss, Emily A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-fc93eaf68ae26bf896364a8684228e461d4e8e6a188da7c3cead43e95a90f60d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical properties</topic><topic>Chemistry</topic><topic>Electrons</topic><topic>Energy transfer</topic><topic>Ligands</topic><topic>Luminescence</topic><topic>Nanocrystals</topic><topic>Nanoparticles - chemistry</topic><topic>Nanostructured materials</topic><topic>Quantum dots</topic><topic>Quantum Dots - chemistry</topic><topic>Semiconductors</topic><topic>Surface chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterson, Mark D</creatorcontrib><creatorcontrib>Cass, Laura C</creatorcontrib><creatorcontrib>Harris, Rachel D</creatorcontrib><creatorcontrib>Edme, Kedy</creatorcontrib><creatorcontrib>Sung, Kimberly</creatorcontrib><creatorcontrib>Weiss, Emily A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Annual review of physical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peterson, Mark D</au><au>Cass, Laura C</au><au>Harris, Rachel D</au><au>Edme, Kedy</au><au>Sung, Kimberly</au><au>Weiss, Emily A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots</atitle><jtitle>Annual review of physical chemistry</jtitle><addtitle>Annu Rev Phys Chem</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>65</volume><issue>1</issue><spage>317</spage><epage>339</epage><pages>317-339</pages><issn>0066-426X</issn><eissn>1545-1593</eissn><coden>ARPLAP</coden><abstract>This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determines the competition between Auger relaxation and electronic-to-vibrational energy transfer in the intraband cooling of hot carriers, and between electron or hole-trapping processes and radiative recombination in relaxation of band-edge excitons. The latter competition determines the photoluminescence quantum yield of the nanocrystals, which is predictable through a set of mostly phenomenological models that link the surface coverage of ligands with specific chemical properties to the rate constants for nonradiative exciton decay.</abstract><cop>United States</cop><pub>Annual Reviews, Inc</pub><pmid>24364916</pmid><doi>10.1146/annurev-physchem-040513-103649</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0066-426X
ispartof Annual review of physical chemistry, 2014-01, Vol.65 (1), p.317-339
issn 0066-426X
1545-1593
language eng
recordid cdi_proquest_journals_1518983406
source Annual Reviews; MEDLINE
subjects Chemical properties
Chemistry
Electrons
Energy transfer
Ligands
Luminescence
Nanocrystals
Nanoparticles - chemistry
Nanostructured materials
Quantum dots
Quantum Dots - chemistry
Semiconductors
Surface chemistry
Surface Properties
title The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20ligands%20in%20determining%20the%20exciton%20relaxation%20dynamics%20in%20semiconductor%20quantum%20dots&rft.jtitle=Annual%20review%20of%20physical%20chemistry&rft.au=Peterson,%20Mark%20D&rft.date=2014-01-01&rft.volume=65&rft.issue=1&rft.spage=317&rft.epage=339&rft.pages=317-339&rft.issn=0066-426X&rft.eissn=1545-1593&rft.coden=ARPLAP&rft_id=info:doi/10.1146/annurev-physchem-040513-103649&rft_dat=%3Cproquest_cross%3E3285313771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518983406&rft_id=info:pmid/24364916&rfr_iscdi=true