The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots
This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determin...
Gespeichert in:
Veröffentlicht in: | Annual review of physical chemistry 2014-01, Vol.65 (1), p.317-339 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 339 |
---|---|
container_issue | 1 |
container_start_page | 317 |
container_title | Annual review of physical chemistry |
container_volume | 65 |
creator | Peterson, Mark D Cass, Laura C Harris, Rachel D Edme, Kedy Sung, Kimberly Weiss, Emily A |
description | This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determines the competition between Auger relaxation and electronic-to-vibrational energy transfer in the intraband cooling of hot carriers, and between electron or hole-trapping processes and radiative recombination in relaxation of band-edge excitons. The latter competition determines the photoluminescence quantum yield of the nanocrystals, which is predictable through a set of mostly phenomenological models that link the surface coverage of ligands with specific chemical properties to the rate constants for nonradiative exciton decay. |
doi_str_mv | 10.1146/annurev-physchem-040513-103649 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1518983406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3285313771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-fc93eaf68ae26bf896364a8684228e461d4e8e6a188da7c3cead43e95a90f60d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlb_ggQEb6vJJptmL4IUv6DgpYK3mCaz7ZZu0iZZaf-9W7d6mvfwzDvDg9AtJXeUcnGvnWsDfGeb5T6aJTQZ4aSgLKOECV6eoCEteJHRomSnaEiIEBnPxecAXcS4IoSUjOfnaJDzA03FEH3NloCDXwP2FV7XC-1sxLXDFhKEpna1W-DUIbAzdfIOB1jrnU51F-3e6aY2v3iELnlnW5N8wNtWu9Q22PoUL9FZpdcRro5zhD6en2aT12z6_vI2eZxmho_HKatMyUBXQmrIxbySpeg-1FJInucSuKCWgwShqZRWjw0zoC1nUBa6JJUglo3QTd-7CX7bQkxq5dvgupOKFlSWknEiOuqhp0zwMQao1CbUjQ57RYk6CFZHwepPsOoFq15wV3B9PNPOG7D_639G2Q_i2n7x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518983406</pqid></control><display><type>article</type><title>The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots</title><source>Annual Reviews</source><source>MEDLINE</source><creator>Peterson, Mark D ; Cass, Laura C ; Harris, Rachel D ; Edme, Kedy ; Sung, Kimberly ; Weiss, Emily A</creator><creatorcontrib>Peterson, Mark D ; Cass, Laura C ; Harris, Rachel D ; Edme, Kedy ; Sung, Kimberly ; Weiss, Emily A</creatorcontrib><description>This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determines the competition between Auger relaxation and electronic-to-vibrational energy transfer in the intraband cooling of hot carriers, and between electron or hole-trapping processes and radiative recombination in relaxation of band-edge excitons. The latter competition determines the photoluminescence quantum yield of the nanocrystals, which is predictable through a set of mostly phenomenological models that link the surface coverage of ligands with specific chemical properties to the rate constants for nonradiative exciton decay.</description><identifier>ISSN: 0066-426X</identifier><identifier>EISSN: 1545-1593</identifier><identifier>DOI: 10.1146/annurev-physchem-040513-103649</identifier><identifier>PMID: 24364916</identifier><identifier>CODEN: ARPLAP</identifier><language>eng</language><publisher>United States: Annual Reviews, Inc</publisher><subject>Chemical properties ; Chemistry ; Electrons ; Energy transfer ; Ligands ; Luminescence ; Nanocrystals ; Nanoparticles - chemistry ; Nanostructured materials ; Quantum dots ; Quantum Dots - chemistry ; Semiconductors ; Surface chemistry ; Surface Properties</subject><ispartof>Annual review of physical chemistry, 2014-01, Vol.65 (1), p.317-339</ispartof><rights>Copyright Annual Reviews, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-fc93eaf68ae26bf896364a8684228e461d4e8e6a188da7c3cead43e95a90f60d3</citedby><cites>FETCH-LOGICAL-c477t-fc93eaf68ae26bf896364a8684228e461d4e8e6a188da7c3cead43e95a90f60d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4183,27925,27926</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24364916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peterson, Mark D</creatorcontrib><creatorcontrib>Cass, Laura C</creatorcontrib><creatorcontrib>Harris, Rachel D</creatorcontrib><creatorcontrib>Edme, Kedy</creatorcontrib><creatorcontrib>Sung, Kimberly</creatorcontrib><creatorcontrib>Weiss, Emily A</creatorcontrib><title>The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots</title><title>Annual review of physical chemistry</title><addtitle>Annu Rev Phys Chem</addtitle><description>This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determines the competition between Auger relaxation and electronic-to-vibrational energy transfer in the intraband cooling of hot carriers, and between electron or hole-trapping processes and radiative recombination in relaxation of band-edge excitons. The latter competition determines the photoluminescence quantum yield of the nanocrystals, which is predictable through a set of mostly phenomenological models that link the surface coverage of ligands with specific chemical properties to the rate constants for nonradiative exciton decay.</description><subject>Chemical properties</subject><subject>Chemistry</subject><subject>Electrons</subject><subject>Energy transfer</subject><subject>Ligands</subject><subject>Luminescence</subject><subject>Nanocrystals</subject><subject>Nanoparticles - chemistry</subject><subject>Nanostructured materials</subject><subject>Quantum dots</subject><subject>Quantum Dots - chemistry</subject><subject>Semiconductors</subject><subject>Surface chemistry</subject><subject>Surface Properties</subject><issn>0066-426X</issn><issn>1545-1593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1LAzEQhoMotlb_ggQEb6vJJptmL4IUv6DgpYK3mCaz7ZZu0iZZaf-9W7d6mvfwzDvDg9AtJXeUcnGvnWsDfGeb5T6aJTQZ4aSgLKOECV6eoCEteJHRomSnaEiIEBnPxecAXcS4IoSUjOfnaJDzA03FEH3NloCDXwP2FV7XC-1sxLXDFhKEpna1W-DUIbAzdfIOB1jrnU51F-3e6aY2v3iELnlnW5N8wNtWu9Q22PoUL9FZpdcRro5zhD6en2aT12z6_vI2eZxmho_HKatMyUBXQmrIxbySpeg-1FJInucSuKCWgwShqZRWjw0zoC1nUBa6JJUglo3QTd-7CX7bQkxq5dvgupOKFlSWknEiOuqhp0zwMQao1CbUjQ57RYk6CFZHwepPsOoFq15wV3B9PNPOG7D_639G2Q_i2n7x</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Peterson, Mark D</creator><creator>Cass, Laura C</creator><creator>Harris, Rachel D</creator><creator>Edme, Kedy</creator><creator>Sung, Kimberly</creator><creator>Weiss, Emily A</creator><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20140101</creationdate><title>The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots</title><author>Peterson, Mark D ; Cass, Laura C ; Harris, Rachel D ; Edme, Kedy ; Sung, Kimberly ; Weiss, Emily A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-fc93eaf68ae26bf896364a8684228e461d4e8e6a188da7c3cead43e95a90f60d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemical properties</topic><topic>Chemistry</topic><topic>Electrons</topic><topic>Energy transfer</topic><topic>Ligands</topic><topic>Luminescence</topic><topic>Nanocrystals</topic><topic>Nanoparticles - chemistry</topic><topic>Nanostructured materials</topic><topic>Quantum dots</topic><topic>Quantum Dots - chemistry</topic><topic>Semiconductors</topic><topic>Surface chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterson, Mark D</creatorcontrib><creatorcontrib>Cass, Laura C</creatorcontrib><creatorcontrib>Harris, Rachel D</creatorcontrib><creatorcontrib>Edme, Kedy</creatorcontrib><creatorcontrib>Sung, Kimberly</creatorcontrib><creatorcontrib>Weiss, Emily A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Annual review of physical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peterson, Mark D</au><au>Cass, Laura C</au><au>Harris, Rachel D</au><au>Edme, Kedy</au><au>Sung, Kimberly</au><au>Weiss, Emily A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots</atitle><jtitle>Annual review of physical chemistry</jtitle><addtitle>Annu Rev Phys Chem</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>65</volume><issue>1</issue><spage>317</spage><epage>339</epage><pages>317-339</pages><issn>0066-426X</issn><eissn>1545-1593</eissn><coden>ARPLAP</coden><abstract>This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determines the competition between Auger relaxation and electronic-to-vibrational energy transfer in the intraband cooling of hot carriers, and between electron or hole-trapping processes and radiative recombination in relaxation of band-edge excitons. The latter competition determines the photoluminescence quantum yield of the nanocrystals, which is predictable through a set of mostly phenomenological models that link the surface coverage of ligands with specific chemical properties to the rate constants for nonradiative exciton decay.</abstract><cop>United States</cop><pub>Annual Reviews, Inc</pub><pmid>24364916</pmid><doi>10.1146/annurev-physchem-040513-103649</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0066-426X |
ispartof | Annual review of physical chemistry, 2014-01, Vol.65 (1), p.317-339 |
issn | 0066-426X 1545-1593 |
language | eng |
recordid | cdi_proquest_journals_1518983406 |
source | Annual Reviews; MEDLINE |
subjects | Chemical properties Chemistry Electrons Energy transfer Ligands Luminescence Nanocrystals Nanoparticles - chemistry Nanostructured materials Quantum dots Quantum Dots - chemistry Semiconductors Surface chemistry Surface Properties |
title | The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20ligands%20in%20determining%20the%20exciton%20relaxation%20dynamics%20in%20semiconductor%20quantum%20dots&rft.jtitle=Annual%20review%20of%20physical%20chemistry&rft.au=Peterson,%20Mark%20D&rft.date=2014-01-01&rft.volume=65&rft.issue=1&rft.spage=317&rft.epage=339&rft.pages=317-339&rft.issn=0066-426X&rft.eissn=1545-1593&rft.coden=ARPLAP&rft_id=info:doi/10.1146/annurev-physchem-040513-103649&rft_dat=%3Cproquest_cross%3E3285313771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518983406&rft_id=info:pmid/24364916&rfr_iscdi=true |