Exploring the Interface of Graphene and Biology

To take advantage of the properties of graphene in biomedical applications, well-defined materials need to be matched with intended applications. Graphene is highly conductive, flexible, and has controllable permittivity and hydrophilicity, among its other distinctive properties ( 1 , 2 ). These pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2014-04, Vol.344 (6181), p.261-263
Hauptverfasser: Kostarelos, Kostas, Novoselov, Kostya S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 6181
container_start_page 261
container_title Science (American Association for the Advancement of Science)
container_volume 344
creator Kostarelos, Kostas
Novoselov, Kostya S.
description To take advantage of the properties of graphene in biomedical applications, well-defined materials need to be matched with intended applications. Graphene is highly conductive, flexible, and has controllable permittivity and hydrophilicity, among its other distinctive properties ( 1 , 2 ). These properties could enable the development of multifunctional biomedical devices ( 3 ). A key issue for such applications is the determination of the possible interactions with components of the biological milieu to reveal the opportunities offered and the limitations posed. As with any other nanomaterial, biological studies of graphene should be performed with very specific, well-designed, and well-characterized types of materials with defined exposure. We outline three layers of complexity that are interconnected and need to be considered carefully in the development of graphene for use in biomedical applications: material characteristics; interactions with biological components (tissues, cells, and proteins); and biological activity outcomes.
doi_str_mv 10.1126/science.1246736
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1517440716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24743674</jstor_id><sourcerecordid>24743674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7647cc40a7f5e658d3209429a78566764314f3c1e28b284fdedb9b92b93a0ed93</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtnT8KC520n35ujFq2Fghc9h2x20m6pmzXZgv33rrR4GObwPu8MPITcU5hRytQ8-xY7jzPKhNJcXZAJBSNLw4BfkgkAV2UFWl6Tm5x3AGNm-ITMX376fUxttymGLRarbsAUnMcihmKZXL_FDgvXNcVzG_dxc7wlV8HtM96d95R8vr58LN7K9ftytXhal55LPZRaCe29AKeDRCWrhjMwghmnK6nUmHIqAvcUWVWzSoQGm9rUhtWGO8DG8Cl5PN3tU_w-YB7sLh5SN760VFItBGiqRmp-onyKOScMtk_tl0tHS8H-WbFnK_ZsZWw8nBq7PMT0jzOhBVfj_AIMaF5G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517440716</pqid></control><display><type>article</type><title>Exploring the Interface of Graphene and Biology</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Kostarelos, Kostas ; Novoselov, Kostya S.</creator><creatorcontrib>Kostarelos, Kostas ; Novoselov, Kostya S.</creatorcontrib><description>To take advantage of the properties of graphene in biomedical applications, well-defined materials need to be matched with intended applications. Graphene is highly conductive, flexible, and has controllable permittivity and hydrophilicity, among its other distinctive properties ( 1 , 2 ). These properties could enable the development of multifunctional biomedical devices ( 3 ). A key issue for such applications is the determination of the possible interactions with components of the biological milieu to reveal the opportunities offered and the limitations posed. As with any other nanomaterial, biological studies of graphene should be performed with very specific, well-designed, and well-characterized types of materials with defined exposure. We outline three layers of complexity that are interconnected and need to be considered carefully in the development of graphene for use in biomedical applications: material characteristics; interactions with biological components (tissues, cells, and proteins); and biological activity outcomes.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1246736</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Astronomical extinction ; Biodegradation ; Biology ; Biomedical research ; Carbon ; Cell membranes ; Endocytosis ; Extinct species ; Graphene ; Materials ; PERSPECTIVES ; Plasma interactions ; Specimens ; Voucher specimens</subject><ispartof>Science (American Association for the Advancement of Science), 2014-04, Vol.344 (6181), p.261-263</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7647cc40a7f5e658d3209429a78566764314f3c1e28b284fdedb9b92b93a0ed93</citedby><cites>FETCH-LOGICAL-c357t-7647cc40a7f5e658d3209429a78566764314f3c1e28b284fdedb9b92b93a0ed93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24743674$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24743674$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2882,2883,27923,27924,58016,58249</link.rule.ids></links><search><creatorcontrib>Kostarelos, Kostas</creatorcontrib><creatorcontrib>Novoselov, Kostya S.</creatorcontrib><title>Exploring the Interface of Graphene and Biology</title><title>Science (American Association for the Advancement of Science)</title><description>To take advantage of the properties of graphene in biomedical applications, well-defined materials need to be matched with intended applications. Graphene is highly conductive, flexible, and has controllable permittivity and hydrophilicity, among its other distinctive properties ( 1 , 2 ). These properties could enable the development of multifunctional biomedical devices ( 3 ). A key issue for such applications is the determination of the possible interactions with components of the biological milieu to reveal the opportunities offered and the limitations posed. As with any other nanomaterial, biological studies of graphene should be performed with very specific, well-designed, and well-characterized types of materials with defined exposure. We outline three layers of complexity that are interconnected and need to be considered carefully in the development of graphene for use in biomedical applications: material characteristics; interactions with biological components (tissues, cells, and proteins); and biological activity outcomes.</description><subject>Astronomical extinction</subject><subject>Biodegradation</subject><subject>Biology</subject><subject>Biomedical research</subject><subject>Carbon</subject><subject>Cell membranes</subject><subject>Endocytosis</subject><subject>Extinct species</subject><subject>Graphene</subject><subject>Materials</subject><subject>PERSPECTIVES</subject><subject>Plasma interactions</subject><subject>Specimens</subject><subject>Voucher specimens</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKtnT8KC520n35ujFq2Fghc9h2x20m6pmzXZgv33rrR4GObwPu8MPITcU5hRytQ8-xY7jzPKhNJcXZAJBSNLw4BfkgkAV2UFWl6Tm5x3AGNm-ITMX376fUxttymGLRarbsAUnMcihmKZXL_FDgvXNcVzG_dxc7wlV8HtM96d95R8vr58LN7K9ftytXhal55LPZRaCe29AKeDRCWrhjMwghmnK6nUmHIqAvcUWVWzSoQGm9rUhtWGO8DG8Cl5PN3tU_w-YB7sLh5SN760VFItBGiqRmp-onyKOScMtk_tl0tHS8H-WbFnK_ZsZWw8nBq7PMT0jzOhBVfj_AIMaF5G</recordid><startdate>20140418</startdate><enddate>20140418</enddate><creator>Kostarelos, Kostas</creator><creator>Novoselov, Kostya S.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20140418</creationdate><title>Exploring the Interface of Graphene and Biology</title><author>Kostarelos, Kostas ; Novoselov, Kostya S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7647cc40a7f5e658d3209429a78566764314f3c1e28b284fdedb9b92b93a0ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Astronomical extinction</topic><topic>Biodegradation</topic><topic>Biology</topic><topic>Biomedical research</topic><topic>Carbon</topic><topic>Cell membranes</topic><topic>Endocytosis</topic><topic>Extinct species</topic><topic>Graphene</topic><topic>Materials</topic><topic>PERSPECTIVES</topic><topic>Plasma interactions</topic><topic>Specimens</topic><topic>Voucher specimens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostarelos, Kostas</creatorcontrib><creatorcontrib>Novoselov, Kostya S.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostarelos, Kostas</au><au>Novoselov, Kostya S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Interface of Graphene and Biology</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2014-04-18</date><risdate>2014</risdate><volume>344</volume><issue>6181</issue><spage>261</spage><epage>263</epage><pages>261-263</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>To take advantage of the properties of graphene in biomedical applications, well-defined materials need to be matched with intended applications. Graphene is highly conductive, flexible, and has controllable permittivity and hydrophilicity, among its other distinctive properties ( 1 , 2 ). These properties could enable the development of multifunctional biomedical devices ( 3 ). A key issue for such applications is the determination of the possible interactions with components of the biological milieu to reveal the opportunities offered and the limitations posed. As with any other nanomaterial, biological studies of graphene should be performed with very specific, well-designed, and well-characterized types of materials with defined exposure. We outline three layers of complexity that are interconnected and need to be considered carefully in the development of graphene for use in biomedical applications: material characteristics; interactions with biological components (tissues, cells, and proteins); and biological activity outcomes.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.1246736</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2014-04, Vol.344 (6181), p.261-263
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_journals_1517440716
source JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Astronomical extinction
Biodegradation
Biology
Biomedical research
Carbon
Cell membranes
Endocytosis
Extinct species
Graphene
Materials
PERSPECTIVES
Plasma interactions
Specimens
Voucher specimens
title Exploring the Interface of Graphene and Biology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Interface%20of%20Graphene%20and%20Biology&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kostarelos,%20Kostas&rft.date=2014-04-18&rft.volume=344&rft.issue=6181&rft.spage=261&rft.epage=263&rft.pages=261-263&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1246736&rft_dat=%3Cjstor_proqu%3E24743674%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1517440716&rft_id=info:pmid/&rft_jstor_id=24743674&rfr_iscdi=true