Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system

This article reports a study of the chemical cure kinetics and the development of glass transition temperature of a low temperature (40°C) curing epoxy system (MY 750/HY 5922). Differential scanning calorimetry, temperature modulated differential scanning calorimetry, and dielectric spectroscopy wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2012-05, Vol.124 (3), p.1899-1905
Hauptverfasser: Dimopoulos, Athanasios, Skordos, Alexandros A., Partridge, Ivana K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1905
container_issue 3
container_start_page 1899
container_title Journal of applied polymer science
container_volume 124
creator Dimopoulos, Athanasios
Skordos, Alexandros A.
Partridge, Ivana K.
description This article reports a study of the chemical cure kinetics and the development of glass transition temperature of a low temperature (40°C) curing epoxy system (MY 750/HY 5922). Differential scanning calorimetry, temperature modulated differential scanning calorimetry, and dielectric spectroscopy were utilized to characterize the curing reaction and the development of the cross‐linking network. A phenomenological model based on a double autocatalytic chemical kinetics expression was developed to simulate the cure kinetics behavior of the system, while the dependence of the glass transition temperature on the degree of cure was found to be described adequately by the Di Benedetto equation. The resulting cure kinetics showed good agreement with the experimental data under both dynamic and isothermal heating conditions with an average error in reaction rate of less than 2 × 10−3 min−1. A comparison of the dielectric response of the resin with cure kinetics showed a close correspondence between the imaginary impedance maximum and the calorimetric progress of reaction. Thus, it is demonstrated that cure kinetics modeling and monitoring procedures developed for aerospace grade epoxies are fully applicable to the study of low temperature curing epoxy resins. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
doi_str_mv 10.1002/app.34605
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1516990947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3277717891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4025-afdef1def678a184feb3ddbfe3971d3c5aadc19048f9d7b65eb2dafcfcf67c7c3</originalsourceid><addsrcrecordid>eNp1kF9vFCEUxYnRxLX64DcgMT6YdLowM8Dw2Gy0Gmu7xr9vhIWLoZ0dEGZt59FvXqZbm_jQkAs3ub9zbjgIvaTkiBJSL3WMR03LCXuEFpRIUbW87h6jRZnRqpOSPUXPcr4ghFJG-AL9Xe0S4Es_wOhNPsS_ep0zHpMesh99GPAI2whJjzNm4Q_0IW5hGA-xHiy2HnowY_IG5zg3IZsQJxwc1rgPV_-pzXxBDNfTUm_LQpynXObP0ROn-wwv7t4D9O3d26-r99Xp-cmH1fFpZVpSs0o7C46W4qLTtGsdbBprNw4aKahtDNPaGipJ2zlpxYYz2NRWO1MOF0aY5gC92vvGFH7vII_qIuzSUFYqyiiXkshWFOrNnjLlLzmBUzH5rU6TokTNCauSsLpNuLCv7xx1Nrp3JTTj872gZpy0ksyeyz135XuYHjZUx-v1P-dqr_Aloet7hU6XiotGMPXj7ESdrT59__Lz41p9bm4AnrSeew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516990947</pqid></control><display><type>article</type><title>Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system</title><source>Wiley Online Library All Journals</source><creator>Dimopoulos, Athanasios ; Skordos, Alexandros A. ; Partridge, Ivana K.</creator><creatorcontrib>Dimopoulos, Athanasios ; Skordos, Alexandros A. ; Partridge, Ivana K.</creatorcontrib><description>This article reports a study of the chemical cure kinetics and the development of glass transition temperature of a low temperature (40°C) curing epoxy system (MY 750/HY 5922). Differential scanning calorimetry, temperature modulated differential scanning calorimetry, and dielectric spectroscopy were utilized to characterize the curing reaction and the development of the cross‐linking network. A phenomenological model based on a double autocatalytic chemical kinetics expression was developed to simulate the cure kinetics behavior of the system, while the dependence of the glass transition temperature on the degree of cure was found to be described adequately by the Di Benedetto equation. The resulting cure kinetics showed good agreement with the experimental data under both dynamic and isothermal heating conditions with an average error in reaction rate of less than 2 × 10−3 min−1. A comparison of the dielectric response of the resin with cure kinetics showed a close correspondence between the imaginary impedance maximum and the calorimetric progress of reaction. Thus, it is demonstrated that cure kinetics modeling and monitoring procedures developed for aerospace grade epoxies are fully applicable to the study of low temperature curing epoxy resins. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.34605</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical properties ; curing of polymers ; dielectric spectroscopy ; differential scanning calorimetry ; Exact sciences and technology ; glass transition ; kinetics ; Materials science ; Polymer industry, paints, wood ; Polymers ; Properties and testing ; Technology of polymers</subject><ispartof>Journal of applied polymer science, 2012-05, Vol.124 (3), p.1899-1905</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4025-afdef1def678a184feb3ddbfe3971d3c5aadc19048f9d7b65eb2dafcfcf67c7c3</citedby><cites>FETCH-LOGICAL-c4025-afdef1def678a184feb3ddbfe3971d3c5aadc19048f9d7b65eb2dafcfcf67c7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.34605$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.34605$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25604907$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimopoulos, Athanasios</creatorcontrib><creatorcontrib>Skordos, Alexandros A.</creatorcontrib><creatorcontrib>Partridge, Ivana K.</creatorcontrib><title>Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>This article reports a study of the chemical cure kinetics and the development of glass transition temperature of a low temperature (40°C) curing epoxy system (MY 750/HY 5922). Differential scanning calorimetry, temperature modulated differential scanning calorimetry, and dielectric spectroscopy were utilized to characterize the curing reaction and the development of the cross‐linking network. A phenomenological model based on a double autocatalytic chemical kinetics expression was developed to simulate the cure kinetics behavior of the system, while the dependence of the glass transition temperature on the degree of cure was found to be described adequately by the Di Benedetto equation. The resulting cure kinetics showed good agreement with the experimental data under both dynamic and isothermal heating conditions with an average error in reaction rate of less than 2 × 10−3 min−1. A comparison of the dielectric response of the resin with cure kinetics showed a close correspondence between the imaginary impedance maximum and the calorimetric progress of reaction. Thus, it is demonstrated that cure kinetics modeling and monitoring procedures developed for aerospace grade epoxies are fully applicable to the study of low temperature curing epoxy resins. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</description><subject>Applied sciences</subject><subject>Chemical properties</subject><subject>curing of polymers</subject><subject>dielectric spectroscopy</subject><subject>differential scanning calorimetry</subject><subject>Exact sciences and technology</subject><subject>glass transition</subject><subject>kinetics</subject><subject>Materials science</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Properties and testing</subject><subject>Technology of polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kF9vFCEUxYnRxLX64DcgMT6YdLowM8Dw2Gy0Gmu7xr9vhIWLoZ0dEGZt59FvXqZbm_jQkAs3ub9zbjgIvaTkiBJSL3WMR03LCXuEFpRIUbW87h6jRZnRqpOSPUXPcr4ghFJG-AL9Xe0S4Es_wOhNPsS_ep0zHpMesh99GPAI2whJjzNm4Q_0IW5hGA-xHiy2HnowY_IG5zg3IZsQJxwc1rgPV_-pzXxBDNfTUm_LQpynXObP0ROn-wwv7t4D9O3d26-r99Xp-cmH1fFpZVpSs0o7C46W4qLTtGsdbBprNw4aKahtDNPaGipJ2zlpxYYz2NRWO1MOF0aY5gC92vvGFH7vII_qIuzSUFYqyiiXkshWFOrNnjLlLzmBUzH5rU6TokTNCauSsLpNuLCv7xx1Nrp3JTTj872gZpy0ksyeyz135XuYHjZUx-v1P-dqr_Aloet7hU6XiotGMPXj7ESdrT59__Lz41p9bm4AnrSeew</recordid><startdate>20120505</startdate><enddate>20120505</enddate><creator>Dimopoulos, Athanasios</creator><creator>Skordos, Alexandros A.</creator><creator>Partridge, Ivana K.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120505</creationdate><title>Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system</title><author>Dimopoulos, Athanasios ; Skordos, Alexandros A. ; Partridge, Ivana K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4025-afdef1def678a184feb3ddbfe3971d3c5aadc19048f9d7b65eb2dafcfcf67c7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Chemical properties</topic><topic>curing of polymers</topic><topic>dielectric spectroscopy</topic><topic>differential scanning calorimetry</topic><topic>Exact sciences and technology</topic><topic>glass transition</topic><topic>kinetics</topic><topic>Materials science</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Properties and testing</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimopoulos, Athanasios</creatorcontrib><creatorcontrib>Skordos, Alexandros A.</creatorcontrib><creatorcontrib>Partridge, Ivana K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimopoulos, Athanasios</au><au>Skordos, Alexandros A.</au><au>Partridge, Ivana K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2012-05-05</date><risdate>2012</risdate><volume>124</volume><issue>3</issue><spage>1899</spage><epage>1905</epage><pages>1899-1905</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>This article reports a study of the chemical cure kinetics and the development of glass transition temperature of a low temperature (40°C) curing epoxy system (MY 750/HY 5922). Differential scanning calorimetry, temperature modulated differential scanning calorimetry, and dielectric spectroscopy were utilized to characterize the curing reaction and the development of the cross‐linking network. A phenomenological model based on a double autocatalytic chemical kinetics expression was developed to simulate the cure kinetics behavior of the system, while the dependence of the glass transition temperature on the degree of cure was found to be described adequately by the Di Benedetto equation. The resulting cure kinetics showed good agreement with the experimental data under both dynamic and isothermal heating conditions with an average error in reaction rate of less than 2 × 10−3 min−1. A comparison of the dielectric response of the resin with cure kinetics showed a close correspondence between the imaginary impedance maximum and the calorimetric progress of reaction. Thus, it is demonstrated that cure kinetics modeling and monitoring procedures developed for aerospace grade epoxies are fully applicable to the study of low temperature curing epoxy resins. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.34605</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2012-05, Vol.124 (3), p.1899-1905
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_1516990947
source Wiley Online Library All Journals
subjects Applied sciences
Chemical properties
curing of polymers
dielectric spectroscopy
differential scanning calorimetry
Exact sciences and technology
glass transition
kinetics
Materials science
Polymer industry, paints, wood
Polymers
Properties and testing
Technology of polymers
title Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cure%20kinetics,%20glass%20transition%20temperature%20development,%20and%20dielectric%20spectroscopy%20of%20a%20low%20temperature%20cure%20epoxy/amine%20system&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Dimopoulos,%20Athanasios&rft.date=2012-05-05&rft.volume=124&rft.issue=3&rft.spage=1899&rft.epage=1905&rft.pages=1899-1905&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.34605&rft_dat=%3Cproquest_cross%3E3277717891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516990947&rft_id=info:pmid/&rfr_iscdi=true