Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system
This article reports a study of the chemical cure kinetics and the development of glass transition temperature of a low temperature (40°C) curing epoxy system (MY 750/HY 5922). Differential scanning calorimetry, temperature modulated differential scanning calorimetry, and dielectric spectroscopy wer...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2012-05, Vol.124 (3), p.1899-1905 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1905 |
---|---|
container_issue | 3 |
container_start_page | 1899 |
container_title | Journal of applied polymer science |
container_volume | 124 |
creator | Dimopoulos, Athanasios Skordos, Alexandros A. Partridge, Ivana K. |
description | This article reports a study of the chemical cure kinetics and the development of glass transition temperature of a low temperature (40°C) curing epoxy system (MY 750/HY 5922). Differential scanning calorimetry, temperature modulated differential scanning calorimetry, and dielectric spectroscopy were utilized to characterize the curing reaction and the development of the cross‐linking network. A phenomenological model based on a double autocatalytic chemical kinetics expression was developed to simulate the cure kinetics behavior of the system, while the dependence of the glass transition temperature on the degree of cure was found to be described adequately by the Di Benedetto equation. The resulting cure kinetics showed good agreement with the experimental data under both dynamic and isothermal heating conditions with an average error in reaction rate of less than 2 × 10−3 min−1. A comparison of the dielectric response of the resin with cure kinetics showed a close correspondence between the imaginary impedance maximum and the calorimetric progress of reaction. Thus, it is demonstrated that cure kinetics modeling and monitoring procedures developed for aerospace grade epoxies are fully applicable to the study of low temperature curing epoxy resins. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 |
doi_str_mv | 10.1002/app.34605 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1516990947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3277717891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4025-afdef1def678a184feb3ddbfe3971d3c5aadc19048f9d7b65eb2dafcfcf67c7c3</originalsourceid><addsrcrecordid>eNp1kF9vFCEUxYnRxLX64DcgMT6YdLowM8Dw2Gy0Gmu7xr9vhIWLoZ0dEGZt59FvXqZbm_jQkAs3ub9zbjgIvaTkiBJSL3WMR03LCXuEFpRIUbW87h6jRZnRqpOSPUXPcr4ghFJG-AL9Xe0S4Es_wOhNPsS_ep0zHpMesh99GPAI2whJjzNm4Q_0IW5hGA-xHiy2HnowY_IG5zg3IZsQJxwc1rgPV_-pzXxBDNfTUm_LQpynXObP0ROn-wwv7t4D9O3d26-r99Xp-cmH1fFpZVpSs0o7C46W4qLTtGsdbBprNw4aKahtDNPaGipJ2zlpxYYz2NRWO1MOF0aY5gC92vvGFH7vII_qIuzSUFYqyiiXkshWFOrNnjLlLzmBUzH5rU6TokTNCauSsLpNuLCv7xx1Nrp3JTTj872gZpy0ksyeyz135XuYHjZUx-v1P-dqr_Aloet7hU6XiotGMPXj7ESdrT59__Lz41p9bm4AnrSeew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516990947</pqid></control><display><type>article</type><title>Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system</title><source>Wiley Online Library All Journals</source><creator>Dimopoulos, Athanasios ; Skordos, Alexandros A. ; Partridge, Ivana K.</creator><creatorcontrib>Dimopoulos, Athanasios ; Skordos, Alexandros A. ; Partridge, Ivana K.</creatorcontrib><description>This article reports a study of the chemical cure kinetics and the development of glass transition temperature of a low temperature (40°C) curing epoxy system (MY 750/HY 5922). Differential scanning calorimetry, temperature modulated differential scanning calorimetry, and dielectric spectroscopy were utilized to characterize the curing reaction and the development of the cross‐linking network. A phenomenological model based on a double autocatalytic chemical kinetics expression was developed to simulate the cure kinetics behavior of the system, while the dependence of the glass transition temperature on the degree of cure was found to be described adequately by the Di Benedetto equation. The resulting cure kinetics showed good agreement with the experimental data under both dynamic and isothermal heating conditions with an average error in reaction rate of less than 2 × 10−3 min−1. A comparison of the dielectric response of the resin with cure kinetics showed a close correspondence between the imaginary impedance maximum and the calorimetric progress of reaction. Thus, it is demonstrated that cure kinetics modeling and monitoring procedures developed for aerospace grade epoxies are fully applicable to the study of low temperature curing epoxy resins. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.34605</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical properties ; curing of polymers ; dielectric spectroscopy ; differential scanning calorimetry ; Exact sciences and technology ; glass transition ; kinetics ; Materials science ; Polymer industry, paints, wood ; Polymers ; Properties and testing ; Technology of polymers</subject><ispartof>Journal of applied polymer science, 2012-05, Vol.124 (3), p.1899-1905</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4025-afdef1def678a184feb3ddbfe3971d3c5aadc19048f9d7b65eb2dafcfcf67c7c3</citedby><cites>FETCH-LOGICAL-c4025-afdef1def678a184feb3ddbfe3971d3c5aadc19048f9d7b65eb2dafcfcf67c7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.34605$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.34605$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25604907$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimopoulos, Athanasios</creatorcontrib><creatorcontrib>Skordos, Alexandros A.</creatorcontrib><creatorcontrib>Partridge, Ivana K.</creatorcontrib><title>Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>This article reports a study of the chemical cure kinetics and the development of glass transition temperature of a low temperature (40°C) curing epoxy system (MY 750/HY 5922). Differential scanning calorimetry, temperature modulated differential scanning calorimetry, and dielectric spectroscopy were utilized to characterize the curing reaction and the development of the cross‐linking network. A phenomenological model based on a double autocatalytic chemical kinetics expression was developed to simulate the cure kinetics behavior of the system, while the dependence of the glass transition temperature on the degree of cure was found to be described adequately by the Di Benedetto equation. The resulting cure kinetics showed good agreement with the experimental data under both dynamic and isothermal heating conditions with an average error in reaction rate of less than 2 × 10−3 min−1. A comparison of the dielectric response of the resin with cure kinetics showed a close correspondence between the imaginary impedance maximum and the calorimetric progress of reaction. Thus, it is demonstrated that cure kinetics modeling and monitoring procedures developed for aerospace grade epoxies are fully applicable to the study of low temperature curing epoxy resins. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</description><subject>Applied sciences</subject><subject>Chemical properties</subject><subject>curing of polymers</subject><subject>dielectric spectroscopy</subject><subject>differential scanning calorimetry</subject><subject>Exact sciences and technology</subject><subject>glass transition</subject><subject>kinetics</subject><subject>Materials science</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Properties and testing</subject><subject>Technology of polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kF9vFCEUxYnRxLX64DcgMT6YdLowM8Dw2Gy0Gmu7xr9vhIWLoZ0dEGZt59FvXqZbm_jQkAs3ub9zbjgIvaTkiBJSL3WMR03LCXuEFpRIUbW87h6jRZnRqpOSPUXPcr4ghFJG-AL9Xe0S4Es_wOhNPsS_ep0zHpMesh99GPAI2whJjzNm4Q_0IW5hGA-xHiy2HnowY_IG5zg3IZsQJxwc1rgPV_-pzXxBDNfTUm_LQpynXObP0ROn-wwv7t4D9O3d26-r99Xp-cmH1fFpZVpSs0o7C46W4qLTtGsdbBprNw4aKahtDNPaGipJ2zlpxYYz2NRWO1MOF0aY5gC92vvGFH7vII_qIuzSUFYqyiiXkshWFOrNnjLlLzmBUzH5rU6TokTNCauSsLpNuLCv7xx1Nrp3JTTj872gZpy0ksyeyz135XuYHjZUx-v1P-dqr_Aloet7hU6XiotGMPXj7ESdrT59__Lz41p9bm4AnrSeew</recordid><startdate>20120505</startdate><enddate>20120505</enddate><creator>Dimopoulos, Athanasios</creator><creator>Skordos, Alexandros A.</creator><creator>Partridge, Ivana K.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120505</creationdate><title>Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system</title><author>Dimopoulos, Athanasios ; Skordos, Alexandros A. ; Partridge, Ivana K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4025-afdef1def678a184feb3ddbfe3971d3c5aadc19048f9d7b65eb2dafcfcf67c7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Chemical properties</topic><topic>curing of polymers</topic><topic>dielectric spectroscopy</topic><topic>differential scanning calorimetry</topic><topic>Exact sciences and technology</topic><topic>glass transition</topic><topic>kinetics</topic><topic>Materials science</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Properties and testing</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimopoulos, Athanasios</creatorcontrib><creatorcontrib>Skordos, Alexandros A.</creatorcontrib><creatorcontrib>Partridge, Ivana K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimopoulos, Athanasios</au><au>Skordos, Alexandros A.</au><au>Partridge, Ivana K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2012-05-05</date><risdate>2012</risdate><volume>124</volume><issue>3</issue><spage>1899</spage><epage>1905</epage><pages>1899-1905</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>This article reports a study of the chemical cure kinetics and the development of glass transition temperature of a low temperature (40°C) curing epoxy system (MY 750/HY 5922). Differential scanning calorimetry, temperature modulated differential scanning calorimetry, and dielectric spectroscopy were utilized to characterize the curing reaction and the development of the cross‐linking network. A phenomenological model based on a double autocatalytic chemical kinetics expression was developed to simulate the cure kinetics behavior of the system, while the dependence of the glass transition temperature on the degree of cure was found to be described adequately by the Di Benedetto equation. The resulting cure kinetics showed good agreement with the experimental data under both dynamic and isothermal heating conditions with an average error in reaction rate of less than 2 × 10−3 min−1. A comparison of the dielectric response of the resin with cure kinetics showed a close correspondence between the imaginary impedance maximum and the calorimetric progress of reaction. Thus, it is demonstrated that cure kinetics modeling and monitoring procedures developed for aerospace grade epoxies are fully applicable to the study of low temperature curing epoxy resins. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.34605</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2012-05, Vol.124 (3), p.1899-1905 |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_1516990947 |
source | Wiley Online Library All Journals |
subjects | Applied sciences Chemical properties curing of polymers dielectric spectroscopy differential scanning calorimetry Exact sciences and technology glass transition kinetics Materials science Polymer industry, paints, wood Polymers Properties and testing Technology of polymers |
title | Cure kinetics, glass transition temperature development, and dielectric spectroscopy of a low temperature cure epoxy/amine system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cure%20kinetics,%20glass%20transition%20temperature%20development,%20and%20dielectric%20spectroscopy%20of%20a%20low%20temperature%20cure%20epoxy/amine%20system&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Dimopoulos,%20Athanasios&rft.date=2012-05-05&rft.volume=124&rft.issue=3&rft.spage=1899&rft.epage=1905&rft.pages=1899-1905&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.34605&rft_dat=%3Cproquest_cross%3E3277717891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516990947&rft_id=info:pmid/&rfr_iscdi=true |