Vehicle Localization and Classification Using Off-Board Vision and 3-D Models

Vehicle localization is one of the most common tasks in robotics. Using vision as a sensor, most methods perform localization from cameras mounted on board the vehicle. In contrast, we propose a method based on an off-board camera. The system uses a similarity measure between a camera image and a sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2014-04, Vol.30 (2), p.432-447
Hauptverfasser: Hoermann, Stefan, Borges, Paulo Vinicius Koerich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue 2
container_start_page 432
container_title IEEE transactions on robotics
container_volume 30
creator Hoermann, Stefan
Borges, Paulo Vinicius Koerich
description Vehicle localization is one of the most common tasks in robotics. Using vision as a sensor, most methods perform localization from cameras mounted on board the vehicle. In contrast, we propose a method based on an off-board camera. The system uses a similarity measure between a camera image and a synthetic image generated using a 3-D vehicle model, ideally converging to the true pose of the vehicle. The similarity measure is based on a model of shading appearance, which depends on the surface curvature of the 3-D model. Considering that the area observed by the camera is fairly planar, a rough initial estimation for the position of the object can be obtained using 2-D blob tracking. The 3-D model of the vehicle can be rendered near the vehicle in the real image, and using the proposed similarity measure, it converges to the correct pose. A classification function to discriminate between different vehicles is also proposed, making it possible for the system to identify and track multiple vehicles of interest. A number of experiments are performed with different vehicles outdoors, in a real industrial environment, considering different illumination conditions. The low average error rate compared with a laser-based ground truth illustrates the applicability of the method.
doi_str_mv 10.1109/TRO.2013.2291613
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1515287921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6680682</ieee_id><sourcerecordid>1531003700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-a587a7ca7dd726d3f395aeba95dd60ef98fe85f8201ff9087130b8fc893b6743</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgIMoWKt3wcuCFy9bJ8nmddT6hJaC1F5Dukk0ZbvRTXvQX2_KVg8ehhmGb4aZD6FzDCOMQV3PX2YjApiOCFGYY3qABlhVuISKy8NcM0ZKCkoeo5OUVgCkUkAHaLpw76FuXDGJtWnCt9mE2BamtcW4MSkFH-q-9ZpC-1bMvC9vo-lssQjpl6TlXTGN1jXpFB150yR3ts9DNH-4n4-fysns8Xl8MylrSqpNaZgURtRGWCsIt9RTxYxbGsWs5eC8kt5J5mX-x3sFUmAKS-lrqeiSi4oO0VW_9qOLn1uXNnodUu2axrQubpPGjGIAKnIM0eU_dBW3XZuPyxRmRApFcKagp-ouptQ5rz-6sDbdl8agd3p11qt3evVebx656EeCc-4P51wCl4T-AI1cdF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1515287921</pqid></control><display><type>article</type><title>Vehicle Localization and Classification Using Off-Board Vision and 3-D Models</title><source>IEEE Electronic Library (IEL)</source><creator>Hoermann, Stefan ; Borges, Paulo Vinicius Koerich</creator><creatorcontrib>Hoermann, Stefan ; Borges, Paulo Vinicius Koerich</creatorcontrib><description>Vehicle localization is one of the most common tasks in robotics. Using vision as a sensor, most methods perform localization from cameras mounted on board the vehicle. In contrast, we propose a method based on an off-board camera. The system uses a similarity measure between a camera image and a synthetic image generated using a 3-D vehicle model, ideally converging to the true pose of the vehicle. The similarity measure is based on a model of shading appearance, which depends on the surface curvature of the 3-D model. Considering that the area observed by the camera is fairly planar, a rough initial estimation for the position of the object can be obtained using 2-D blob tracking. The 3-D model of the vehicle can be rendered near the vehicle in the real image, and using the proposed similarity measure, it converges to the correct pose. A classification function to discriminate between different vehicles is also proposed, making it possible for the system to identify and track multiple vehicles of interest. A number of experiments are performed with different vehicles outdoors, in a real industrial environment, considering different illumination conditions. The low average error rate compared with a laser-based ground truth illustrates the applicability of the method.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2013.2291613</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D model ; 3-D technology ; Cameras ; Classification ; Estimation ; Image color analysis ; Image edge detection ; Lighting ; Localization ; Mathematical functions ; Off-board surveillance camera ; Position (location) ; Robotics ; Sensors ; Similarity ; Solid modeling ; Three dimensional models ; vehicle localization ; Vehicles ; Vision systems</subject><ispartof>IEEE transactions on robotics, 2014-04, Vol.30 (2), p.432-447</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-a587a7ca7dd726d3f395aeba95dd60ef98fe85f8201ff9087130b8fc893b6743</citedby><cites>FETCH-LOGICAL-c324t-a587a7ca7dd726d3f395aeba95dd60ef98fe85f8201ff9087130b8fc893b6743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6680682$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6680682$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoermann, Stefan</creatorcontrib><creatorcontrib>Borges, Paulo Vinicius Koerich</creatorcontrib><title>Vehicle Localization and Classification Using Off-Board Vision and 3-D Models</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Vehicle localization is one of the most common tasks in robotics. Using vision as a sensor, most methods perform localization from cameras mounted on board the vehicle. In contrast, we propose a method based on an off-board camera. The system uses a similarity measure between a camera image and a synthetic image generated using a 3-D vehicle model, ideally converging to the true pose of the vehicle. The similarity measure is based on a model of shading appearance, which depends on the surface curvature of the 3-D model. Considering that the area observed by the camera is fairly planar, a rough initial estimation for the position of the object can be obtained using 2-D blob tracking. The 3-D model of the vehicle can be rendered near the vehicle in the real image, and using the proposed similarity measure, it converges to the correct pose. A classification function to discriminate between different vehicles is also proposed, making it possible for the system to identify and track multiple vehicles of interest. A number of experiments are performed with different vehicles outdoors, in a real industrial environment, considering different illumination conditions. The low average error rate compared with a laser-based ground truth illustrates the applicability of the method.</description><subject>3-D model</subject><subject>3-D technology</subject><subject>Cameras</subject><subject>Classification</subject><subject>Estimation</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Lighting</subject><subject>Localization</subject><subject>Mathematical functions</subject><subject>Off-board surveillance camera</subject><subject>Position (location)</subject><subject>Robotics</subject><subject>Sensors</subject><subject>Similarity</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>vehicle localization</subject><subject>Vehicles</subject><subject>Vision systems</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQgIMoWKt3wcuCFy9bJ8nmddT6hJaC1F5Dukk0ZbvRTXvQX2_KVg8ehhmGb4aZD6FzDCOMQV3PX2YjApiOCFGYY3qABlhVuISKy8NcM0ZKCkoeo5OUVgCkUkAHaLpw76FuXDGJtWnCt9mE2BamtcW4MSkFH-q-9ZpC-1bMvC9vo-lssQjpl6TlXTGN1jXpFB150yR3ts9DNH-4n4-fysns8Xl8MylrSqpNaZgURtRGWCsIt9RTxYxbGsWs5eC8kt5J5mX-x3sFUmAKS-lrqeiSi4oO0VW_9qOLn1uXNnodUu2axrQubpPGjGIAKnIM0eU_dBW3XZuPyxRmRApFcKagp-ouptQ5rz-6sDbdl8agd3p11qt3evVebx656EeCc-4P51wCl4T-AI1cdF0</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Hoermann, Stefan</creator><creator>Borges, Paulo Vinicius Koerich</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20140401</creationdate><title>Vehicle Localization and Classification Using Off-Board Vision and 3-D Models</title><author>Hoermann, Stefan ; Borges, Paulo Vinicius Koerich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-a587a7ca7dd726d3f395aeba95dd60ef98fe85f8201ff9087130b8fc893b6743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3-D model</topic><topic>3-D technology</topic><topic>Cameras</topic><topic>Classification</topic><topic>Estimation</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Lighting</topic><topic>Localization</topic><topic>Mathematical functions</topic><topic>Off-board surveillance camera</topic><topic>Position (location)</topic><topic>Robotics</topic><topic>Sensors</topic><topic>Similarity</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>vehicle localization</topic><topic>Vehicles</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoermann, Stefan</creatorcontrib><creatorcontrib>Borges, Paulo Vinicius Koerich</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoermann, Stefan</au><au>Borges, Paulo Vinicius Koerich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vehicle Localization and Classification Using Off-Board Vision and 3-D Models</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>30</volume><issue>2</issue><spage>432</spage><epage>447</epage><pages>432-447</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Vehicle localization is one of the most common tasks in robotics. Using vision as a sensor, most methods perform localization from cameras mounted on board the vehicle. In contrast, we propose a method based on an off-board camera. The system uses a similarity measure between a camera image and a synthetic image generated using a 3-D vehicle model, ideally converging to the true pose of the vehicle. The similarity measure is based on a model of shading appearance, which depends on the surface curvature of the 3-D model. Considering that the area observed by the camera is fairly planar, a rough initial estimation for the position of the object can be obtained using 2-D blob tracking. The 3-D model of the vehicle can be rendered near the vehicle in the real image, and using the proposed similarity measure, it converges to the correct pose. A classification function to discriminate between different vehicles is also proposed, making it possible for the system to identify and track multiple vehicles of interest. A number of experiments are performed with different vehicles outdoors, in a real industrial environment, considering different illumination conditions. The low average error rate compared with a laser-based ground truth illustrates the applicability of the method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2013.2291613</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2014-04, Vol.30 (2), p.432-447
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_1515287921
source IEEE Electronic Library (IEL)
subjects 3-D model
3-D technology
Cameras
Classification
Estimation
Image color analysis
Image edge detection
Lighting
Localization
Mathematical functions
Off-board surveillance camera
Position (location)
Robotics
Sensors
Similarity
Solid modeling
Three dimensional models
vehicle localization
Vehicles
Vision systems
title Vehicle Localization and Classification Using Off-Board Vision and 3-D Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vehicle%20Localization%20and%20Classification%20Using%20Off-Board%20Vision%20and%203-D%20Models&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Hoermann,%20Stefan&rft.date=2014-04-01&rft.volume=30&rft.issue=2&rft.spage=432&rft.epage=447&rft.pages=432-447&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2013.2291613&rft_dat=%3Cproquest_RIE%3E1531003700%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1515287921&rft_id=info:pmid/&rft_ieee_id=6680682&rfr_iscdi=true