Pseudo-embeddings and pseudo-hyperplanes

We generalize some known results regarding hyperplanes and projective embeddings of point-line geometries with three points per line to geometries with an arbitrary but finite number of points on each line. In order to generalize these results, we need to introduce the new notions of pseudo-hyperpla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in geometry 2013-01, Vol.13 (1), p.71-95
1. Verfasser: De Bruyn, B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 71
container_title Advances in geometry
container_volume 13
creator De Bruyn, B.
description We generalize some known results regarding hyperplanes and projective embeddings of point-line geometries with three points per line to geometries with an arbitrary but finite number of points on each line. In order to generalize these results, we need to introduce the new notions of pseudo-hyperplane, (universal) pseudo-embedding, pseudo-embedding rank and pseudo-generating rank. We prove several connections between these notions and address the problem of the existence of (certain) pseudo-embeddings. We apply this to several classes of point-line geometries. We also determine the pseudo-embedding rank and the pseudo-generating rank of the projective space PG(n; 4) and the affine space AG(n; 4).
doi_str_mv 10.1515/advgeom-2012-0021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1513834230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3269842591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-934c8b93c3eeee3275961d1c702553af51c2610696bc38cab7ff8c290ae298d03</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_wFvBi5foTKbJJkcpfkFBDwreQjbJ1pbuh0lX6L93lxbnMsPLwwzzMHaNcIcS5b0Lv6vY1lwACg4g8IRNUKHkBSp9-j_Lr3N2kfMGACUImrDb9xz70PJYlzGEdbPKM9eEWXdIv_ddTN3WNTFfsrPKbXO8OvYp-3x6_Fi88OXb8-viYck9odpxQ3OvS0Oe4lAkCmkUBvQFCCnJVRK9UAjKqNKT9q4sqkp7YcBFYXQAmrKbw94utT99zDu7afvUDCft8ChpmgsaKTxQPrU5p1jZLq1rl_YWYeSkPQqxoxA7CqE_FR9UJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513834230</pqid></control><display><type>article</type><title>Pseudo-embeddings and pseudo-hyperplanes</title><source>De Gruyter journals</source><creator>De Bruyn, B.</creator><creatorcontrib>De Bruyn, B.</creatorcontrib><description>We generalize some known results regarding hyperplanes and projective embeddings of point-line geometries with three points per line to geometries with an arbitrary but finite number of points on each line. In order to generalize these results, we need to introduce the new notions of pseudo-hyperplane, (universal) pseudo-embedding, pseudo-embedding rank and pseudo-generating rank. We prove several connections between these notions and address the problem of the existence of (certain) pseudo-embeddings. We apply this to several classes of point-line geometries. We also determine the pseudo-embedding rank and the pseudo-generating rank of the projective space PG(n; 4) and the affine space AG(n; 4).</description><identifier>ISSN: 1615-715X</identifier><identifier>EISSN: 1615-7168</identifier><identifier>DOI: 10.1515/advgeom-2012-0021</identifier><language>eng</language><publisher>Berlin: Walter de Gruyter GmbH</publisher><ispartof>Advances in geometry, 2013-01, Vol.13 (1), p.71-95</ispartof><rights>Copyright Walter de Gruyter GmbH Jan 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-934c8b93c3eeee3275961d1c702553af51c2610696bc38cab7ff8c290ae298d03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>De Bruyn, B.</creatorcontrib><title>Pseudo-embeddings and pseudo-hyperplanes</title><title>Advances in geometry</title><description>We generalize some known results regarding hyperplanes and projective embeddings of point-line geometries with three points per line to geometries with an arbitrary but finite number of points on each line. In order to generalize these results, we need to introduce the new notions of pseudo-hyperplane, (universal) pseudo-embedding, pseudo-embedding rank and pseudo-generating rank. We prove several connections between these notions and address the problem of the existence of (certain) pseudo-embeddings. We apply this to several classes of point-line geometries. We also determine the pseudo-embedding rank and the pseudo-generating rank of the projective space PG(n; 4) and the affine space AG(n; 4).</description><issn>1615-715X</issn><issn>1615-7168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_wFvBi5foTKbJJkcpfkFBDwreQjbJ1pbuh0lX6L93lxbnMsPLwwzzMHaNcIcS5b0Lv6vY1lwACg4g8IRNUKHkBSp9-j_Lr3N2kfMGACUImrDb9xz70PJYlzGEdbPKM9eEWXdIv_ddTN3WNTFfsrPKbXO8OvYp-3x6_Fi88OXb8-viYck9odpxQ3OvS0Oe4lAkCmkUBvQFCCnJVRK9UAjKqNKT9q4sqkp7YcBFYXQAmrKbw94utT99zDu7afvUDCft8ChpmgsaKTxQPrU5p1jZLq1rl_YWYeSkPQqxoxA7CqE_FR9UJQ</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>De Bruyn, B.</creator><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Pseudo-embeddings and pseudo-hyperplanes</title><author>De Bruyn, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-934c8b93c3eeee3275961d1c702553af51c2610696bc38cab7ff8c290ae298d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Bruyn, B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Bruyn, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo-embeddings and pseudo-hyperplanes</atitle><jtitle>Advances in geometry</jtitle><date>2013-01</date><risdate>2013</risdate><volume>13</volume><issue>1</issue><spage>71</spage><epage>95</epage><pages>71-95</pages><issn>1615-715X</issn><eissn>1615-7168</eissn><abstract>We generalize some known results regarding hyperplanes and projective embeddings of point-line geometries with three points per line to geometries with an arbitrary but finite number of points on each line. In order to generalize these results, we need to introduce the new notions of pseudo-hyperplane, (universal) pseudo-embedding, pseudo-embedding rank and pseudo-generating rank. We prove several connections between these notions and address the problem of the existence of (certain) pseudo-embeddings. We apply this to several classes of point-line geometries. We also determine the pseudo-embedding rank and the pseudo-generating rank of the projective space PG(n; 4) and the affine space AG(n; 4).</abstract><cop>Berlin</cop><pub>Walter de Gruyter GmbH</pub><doi>10.1515/advgeom-2012-0021</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-715X
ispartof Advances in geometry, 2013-01, Vol.13 (1), p.71-95
issn 1615-715X
1615-7168
language eng
recordid cdi_proquest_journals_1513834230
source De Gruyter journals
title Pseudo-embeddings and pseudo-hyperplanes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo-embeddings%20and%20pseudo-hyperplanes&rft.jtitle=Advances%20in%20geometry&rft.au=De%20Bruyn,%20B.&rft.date=2013-01&rft.volume=13&rft.issue=1&rft.spage=71&rft.epage=95&rft.pages=71-95&rft.issn=1615-715X&rft.eissn=1615-7168&rft_id=info:doi/10.1515/advgeom-2012-0021&rft_dat=%3Cproquest_cross%3E3269842591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513834230&rft_id=info:pmid/&rfr_iscdi=true