3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs)
We report on the design, fabrication, and characterization of a microfabricated 3D magnetic field sensor that is suitable for co-integration with inertial sensors to form single-chip inertial measurement units. In contrast to classical resonant MEMS magnetometers, which are based on Lorentz force me...
Gespeichert in:
Veröffentlicht in: | Journal of Micro Electro Mechanical Systems 2014-04, Vol.23 (2), p.324-333 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 333 |
---|---|
container_issue | 2 |
container_start_page | 324 |
container_title | Journal of Micro Electro Mechanical Systems |
container_volume | 23 |
creator | Ettelt, Dirk Rey, Patrice Jourdan, Guillaume Walther, Arnaud Robert, Philippe Delamare, Jérôme |
description | We report on the design, fabrication, and characterization of a microfabricated 3D magnetic field sensor that is suitable for co-integration with inertial sensors to form single-chip inertial measurement units. In contrast to classical resonant MEMS magnetometers, which are based on Lorentz force measurement, our sensor uses permanent magnetic materials and piezoresistive detection with silicon strain gauges of nanometric section, leading to low power consumption and high sensitivity for small sensor size. Thin multilayers of CoFe and PtMn as ferro- and antiferromagnetic materials are integrated within the MEMS fabrication process. Sensitivities of 1.09 V/T for x- and y- components of the magnetic field and 0.124 V/T for z- component of the magnetic field were measured, respectively. To be sensitive to magnetic fields along all three spatial directions, two permanent magnetization directions on the same die are required. Implementation of the two magnetization directions was validated by a measured correlation of 99.7% between x- and y- sensitivity axes. Power consumption of the 3D sensor is for polarization with a 100 μA dc current. With resolutions of 100 nT/√Hz for x- and y-component of the magnetic field and 350 nT/√Hz for z- component, the sensor is suitable for precise measurement of earth magnetic field. |
doi_str_mv | 10.1109/JMEMS.2013.2273362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1512676991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6570487</ieee_id><sourcerecordid>1685772326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-55a8b62ac619f60589dddce019f581bf45b9d496814b5cac00a1923504999b5a3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhlcIJErhD8DFEkJqDxs89vrrWIV-BGXFoeRseb2z4GrjDfamEv8eh0Q59DRfz7ya0VtVH4EuAKj5-r29bR8XjAJfMKY4l-xVdQGmgZqC0K9LToWqFQj1tnqX8xOl0DRaXlQt_0Za9yviHDy5Czj25BFjnhJZTtHjbiZDyTcZSYhkFTHNwY2kRZf3CbcYZ7KJYc7katVu8vX76s3gxowfTvGy2tzd_lw-1Osf96vlzbr23LC5FsLpTjLnJZhBUqFN3_ceaamEhm5oRGf6xkgNTSe885Q6MIwL2hhjOuH4ZXV91P3tRrtLYevSXzu5YB9u1vbQo9SU54V-hsJeHdldmv7sMc92G7LHcXQRp322ILVQinEmC_r5Bfo07VMsn1gQwKSSxhwE2ZHyaco54XC-AKg9uGH_u2EPbtiTG2Xpy0naZe_GIbnoQz5vMt1wTQUv3KcjFxDxPJZC0UYr_g8-1I7a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512676991</pqid></control><display><type>article</type><title>3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs)</title><source>IEEE Electronic Library (IEL)</source><creator>Ettelt, Dirk ; Rey, Patrice ; Jourdan, Guillaume ; Walther, Arnaud ; Robert, Philippe ; Delamare, Jérôme</creator><creatorcontrib>Ettelt, Dirk ; Rey, Patrice ; Jourdan, Guillaume ; Walther, Arnaud ; Robert, Philippe ; Delamare, Jérôme</creatorcontrib><description>We report on the design, fabrication, and characterization of a microfabricated 3D magnetic field sensor that is suitable for co-integration with inertial sensors to form single-chip inertial measurement units. In contrast to classical resonant MEMS magnetometers, which are based on Lorentz force measurement, our sensor uses permanent magnetic materials and piezoresistive detection with silicon strain gauges of nanometric section, leading to low power consumption and high sensitivity for small sensor size. Thin multilayers of CoFe and PtMn as ferro- and antiferromagnetic materials are integrated within the MEMS fabrication process. Sensitivities of 1.09 V/T for x- and y- components of the magnetic field and 0.124 V/T for z- component of the magnetic field were measured, respectively. To be sensitive to magnetic fields along all three spatial directions, two permanent magnetization directions on the same die are required. Implementation of the two magnetization directions was validated by a measured correlation of 99.7% between x- and y- sensitivity axes. Power consumption of the 3D sensor is for polarization with a 100 μA dc current. With resolutions of 100 nT/√Hz for x- and y-component of the magnetic field and 350 nT/√Hz for z- component, the sensor is suitable for precise measurement of earth magnetic field.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2013.2273362</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>3D magnetometer ; Electric power ; Engineering Sciences ; Exact sciences and technology ; Inertial ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Magnetic fields ; magnetic material ; Magnetic multilayers ; Magnetism ; Magnetization ; Magnetometers ; Measurements common to several branches of physics and astronomy ; Mechanical instruments, equipment and techniques ; MEMS ; Metrology, measurements and laboratory procedures ; Microelectromechanical systems ; Micromechanical devices ; Micromechanical devices and systems ; Nanostructure ; Perpendicular magnetic anisotropy ; Physics ; Power consumption ; Saturation magnetization ; Sensors ; silicon strain gauge ; Strain gauges ; Three dimensional ; Torque ; Velocity, acceleration and rotation</subject><ispartof>Journal of Micro Electro Mechanical Systems, 2014-04, Vol.23 (2), p.324-333</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-55a8b62ac619f60589dddce019f581bf45b9d496814b5cac00a1923504999b5a3</citedby><cites>FETCH-LOGICAL-c392t-55a8b62ac619f60589dddce019f581bf45b9d496814b5cac00a1923504999b5a3</cites><orcidid>0000-0002-0944-8640 ; 0000-0002-8248-9115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6570487$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6570487$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28438053$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00994158$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ettelt, Dirk</creatorcontrib><creatorcontrib>Rey, Patrice</creatorcontrib><creatorcontrib>Jourdan, Guillaume</creatorcontrib><creatorcontrib>Walther, Arnaud</creatorcontrib><creatorcontrib>Robert, Philippe</creatorcontrib><creatorcontrib>Delamare, Jérôme</creatorcontrib><title>3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs)</title><title>Journal of Micro Electro Mechanical Systems</title><addtitle>JMEMS</addtitle><description>We report on the design, fabrication, and characterization of a microfabricated 3D magnetic field sensor that is suitable for co-integration with inertial sensors to form single-chip inertial measurement units. In contrast to classical resonant MEMS magnetometers, which are based on Lorentz force measurement, our sensor uses permanent magnetic materials and piezoresistive detection with silicon strain gauges of nanometric section, leading to low power consumption and high sensitivity for small sensor size. Thin multilayers of CoFe and PtMn as ferro- and antiferromagnetic materials are integrated within the MEMS fabrication process. Sensitivities of 1.09 V/T for x- and y- components of the magnetic field and 0.124 V/T for z- component of the magnetic field were measured, respectively. To be sensitive to magnetic fields along all three spatial directions, two permanent magnetization directions on the same die are required. Implementation of the two magnetization directions was validated by a measured correlation of 99.7% between x- and y- sensitivity axes. Power consumption of the 3D sensor is for polarization with a 100 μA dc current. With resolutions of 100 nT/√Hz for x- and y-component of the magnetic field and 350 nT/√Hz for z- component, the sensor is suitable for precise measurement of earth magnetic field.</description><subject>3D magnetometer</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Inertial</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Magnetic fields</subject><subject>magnetic material</subject><subject>Magnetic multilayers</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetometers</subject><subject>Measurements common to several branches of physics and astronomy</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>MEMS</subject><subject>Metrology, measurements and laboratory procedures</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Micromechanical devices and systems</subject><subject>Nanostructure</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Physics</subject><subject>Power consumption</subject><subject>Saturation magnetization</subject><subject>Sensors</subject><subject>silicon strain gauge</subject><subject>Strain gauges</subject><subject>Three dimensional</subject><subject>Torque</subject><subject>Velocity, acceleration and rotation</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1vEzEQhlcIJErhD8DFEkJqDxs89vrrWIV-BGXFoeRseb2z4GrjDfamEv8eh0Q59DRfz7ya0VtVH4EuAKj5-r29bR8XjAJfMKY4l-xVdQGmgZqC0K9LToWqFQj1tnqX8xOl0DRaXlQt_0Za9yviHDy5Czj25BFjnhJZTtHjbiZDyTcZSYhkFTHNwY2kRZf3CbcYZ7KJYc7katVu8vX76s3gxowfTvGy2tzd_lw-1Osf96vlzbr23LC5FsLpTjLnJZhBUqFN3_ceaamEhm5oRGf6xkgNTSe885Q6MIwL2hhjOuH4ZXV91P3tRrtLYevSXzu5YB9u1vbQo9SU54V-hsJeHdldmv7sMc92G7LHcXQRp322ILVQinEmC_r5Bfo07VMsn1gQwKSSxhwE2ZHyaco54XC-AKg9uGH_u2EPbtiTG2Xpy0naZe_GIbnoQz5vMt1wTQUv3KcjFxDxPJZC0UYr_g8-1I7a</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Ettelt, Dirk</creator><creator>Rey, Patrice</creator><creator>Jourdan, Guillaume</creator><creator>Walther, Arnaud</creator><creator>Robert, Philippe</creator><creator>Delamare, Jérôme</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0944-8640</orcidid><orcidid>https://orcid.org/0000-0002-8248-9115</orcidid></search><sort><creationdate>20140401</creationdate><title>3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs)</title><author>Ettelt, Dirk ; Rey, Patrice ; Jourdan, Guillaume ; Walther, Arnaud ; Robert, Philippe ; Delamare, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-55a8b62ac619f60589dddce019f581bf45b9d496814b5cac00a1923504999b5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3D magnetometer</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Inertial</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Magnetic fields</topic><topic>magnetic material</topic><topic>Magnetic multilayers</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetometers</topic><topic>Measurements common to several branches of physics and astronomy</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>MEMS</topic><topic>Metrology, measurements and laboratory procedures</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Micromechanical devices and systems</topic><topic>Nanostructure</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Physics</topic><topic>Power consumption</topic><topic>Saturation magnetization</topic><topic>Sensors</topic><topic>silicon strain gauge</topic><topic>Strain gauges</topic><topic>Three dimensional</topic><topic>Torque</topic><topic>Velocity, acceleration and rotation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ettelt, Dirk</creatorcontrib><creatorcontrib>Rey, Patrice</creatorcontrib><creatorcontrib>Jourdan, Guillaume</creatorcontrib><creatorcontrib>Walther, Arnaud</creatorcontrib><creatorcontrib>Robert, Philippe</creatorcontrib><creatorcontrib>Delamare, Jérôme</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Micro Electro Mechanical Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ettelt, Dirk</au><au>Rey, Patrice</au><au>Jourdan, Guillaume</au><au>Walther, Arnaud</au><au>Robert, Philippe</au><au>Delamare, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs)</atitle><jtitle>Journal of Micro Electro Mechanical Systems</jtitle><stitle>JMEMS</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>23</volume><issue>2</issue><spage>324</spage><epage>333</epage><pages>324-333</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>We report on the design, fabrication, and characterization of a microfabricated 3D magnetic field sensor that is suitable for co-integration with inertial sensors to form single-chip inertial measurement units. In contrast to classical resonant MEMS magnetometers, which are based on Lorentz force measurement, our sensor uses permanent magnetic materials and piezoresistive detection with silicon strain gauges of nanometric section, leading to low power consumption and high sensitivity for small sensor size. Thin multilayers of CoFe and PtMn as ferro- and antiferromagnetic materials are integrated within the MEMS fabrication process. Sensitivities of 1.09 V/T for x- and y- components of the magnetic field and 0.124 V/T for z- component of the magnetic field were measured, respectively. To be sensitive to magnetic fields along all three spatial directions, two permanent magnetization directions on the same die are required. Implementation of the two magnetization directions was validated by a measured correlation of 99.7% between x- and y- sensitivity axes. Power consumption of the 3D sensor is for polarization with a 100 μA dc current. With resolutions of 100 nT/√Hz for x- and y-component of the magnetic field and 350 nT/√Hz for z- component, the sensor is suitable for precise measurement of earth magnetic field.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2013.2273362</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0944-8640</orcidid><orcidid>https://orcid.org/0000-0002-8248-9115</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of Micro Electro Mechanical Systems, 2014-04, Vol.23 (2), p.324-333 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_proquest_journals_1512676991 |
source | IEEE Electronic Library (IEL) |
subjects | 3D magnetometer Electric power Engineering Sciences Exact sciences and technology Inertial Instruments, apparatus, components and techniques common to several branches of physics and astronomy Magnetic fields magnetic material Magnetic multilayers Magnetism Magnetization Magnetometers Measurements common to several branches of physics and astronomy Mechanical instruments, equipment and techniques MEMS Metrology, measurements and laboratory procedures Microelectromechanical systems Micromechanical devices Micromechanical devices and systems Nanostructure Perpendicular magnetic anisotropy Physics Power consumption Saturation magnetization Sensors silicon strain gauge Strain gauges Three dimensional Torque Velocity, acceleration and rotation |
title | 3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Magnetic%20Field%20Sensor%20Concept%20for%20Use%20in%20Inertial%20Measurement%20Units%20(IMUs)&rft.jtitle=Journal%20of%20Micro%20Electro%20Mechanical%20Systems&rft.au=Ettelt,%20Dirk&rft.date=2014-04-01&rft.volume=23&rft.issue=2&rft.spage=324&rft.epage=333&rft.pages=324-333&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2013.2273362&rft_dat=%3Cproquest_RIE%3E1685772326%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512676991&rft_id=info:pmid/&rft_ieee_id=6570487&rfr_iscdi=true |