3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs)

We report on the design, fabrication, and characterization of a microfabricated 3D magnetic field sensor that is suitable for co-integration with inertial sensors to form single-chip inertial measurement units. In contrast to classical resonant MEMS magnetometers, which are based on Lorentz force me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Micro Electro Mechanical Systems 2014-04, Vol.23 (2), p.324-333
Hauptverfasser: Ettelt, Dirk, Rey, Patrice, Jourdan, Guillaume, Walther, Arnaud, Robert, Philippe, Delamare, Jérôme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 2
container_start_page 324
container_title Journal of Micro Electro Mechanical Systems
container_volume 23
creator Ettelt, Dirk
Rey, Patrice
Jourdan, Guillaume
Walther, Arnaud
Robert, Philippe
Delamare, Jérôme
description We report on the design, fabrication, and characterization of a microfabricated 3D magnetic field sensor that is suitable for co-integration with inertial sensors to form single-chip inertial measurement units. In contrast to classical resonant MEMS magnetometers, which are based on Lorentz force measurement, our sensor uses permanent magnetic materials and piezoresistive detection with silicon strain gauges of nanometric section, leading to low power consumption and high sensitivity for small sensor size. Thin multilayers of CoFe and PtMn as ferro- and antiferromagnetic materials are integrated within the MEMS fabrication process. Sensitivities of 1.09 V/T for x- and y- components of the magnetic field and 0.124 V/T for z- component of the magnetic field were measured, respectively. To be sensitive to magnetic fields along all three spatial directions, two permanent magnetization directions on the same die are required. Implementation of the two magnetization directions was validated by a measured correlation of 99.7% between x- and y- sensitivity axes. Power consumption of the 3D sensor is for polarization with a 100 μA dc current. With resolutions of 100 nT/√Hz for x- and y-component of the magnetic field and 350 nT/√Hz for z- component, the sensor is suitable for precise measurement of earth magnetic field.
doi_str_mv 10.1109/JMEMS.2013.2273362
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1512676991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6570487</ieee_id><sourcerecordid>1685772326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-55a8b62ac619f60589dddce019f581bf45b9d496814b5cac00a1923504999b5a3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhlcIJErhD8DFEkJqDxs89vrrWIV-BGXFoeRseb2z4GrjDfamEv8eh0Q59DRfz7ya0VtVH4EuAKj5-r29bR8XjAJfMKY4l-xVdQGmgZqC0K9LToWqFQj1tnqX8xOl0DRaXlQt_0Za9yviHDy5Czj25BFjnhJZTtHjbiZDyTcZSYhkFTHNwY2kRZf3CbcYZ7KJYc7katVu8vX76s3gxowfTvGy2tzd_lw-1Osf96vlzbr23LC5FsLpTjLnJZhBUqFN3_ceaamEhm5oRGf6xkgNTSe885Q6MIwL2hhjOuH4ZXV91P3tRrtLYevSXzu5YB9u1vbQo9SU54V-hsJeHdldmv7sMc92G7LHcXQRp322ILVQinEmC_r5Bfo07VMsn1gQwKSSxhwE2ZHyaco54XC-AKg9uGH_u2EPbtiTG2Xpy0naZe_GIbnoQz5vMt1wTQUv3KcjFxDxPJZC0UYr_g8-1I7a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512676991</pqid></control><display><type>article</type><title>3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs)</title><source>IEEE Electronic Library (IEL)</source><creator>Ettelt, Dirk ; Rey, Patrice ; Jourdan, Guillaume ; Walther, Arnaud ; Robert, Philippe ; Delamare, Jérôme</creator><creatorcontrib>Ettelt, Dirk ; Rey, Patrice ; Jourdan, Guillaume ; Walther, Arnaud ; Robert, Philippe ; Delamare, Jérôme</creatorcontrib><description>We report on the design, fabrication, and characterization of a microfabricated 3D magnetic field sensor that is suitable for co-integration with inertial sensors to form single-chip inertial measurement units. In contrast to classical resonant MEMS magnetometers, which are based on Lorentz force measurement, our sensor uses permanent magnetic materials and piezoresistive detection with silicon strain gauges of nanometric section, leading to low power consumption and high sensitivity for small sensor size. Thin multilayers of CoFe and PtMn as ferro- and antiferromagnetic materials are integrated within the MEMS fabrication process. Sensitivities of 1.09 V/T for x- and y- components of the magnetic field and 0.124 V/T for z- component of the magnetic field were measured, respectively. To be sensitive to magnetic fields along all three spatial directions, two permanent magnetization directions on the same die are required. Implementation of the two magnetization directions was validated by a measured correlation of 99.7% between x- and y- sensitivity axes. Power consumption of the 3D sensor is for polarization with a 100 μA dc current. With resolutions of 100 nT/√Hz for x- and y-component of the magnetic field and 350 nT/√Hz for z- component, the sensor is suitable for precise measurement of earth magnetic field.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2013.2273362</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>3D magnetometer ; Electric power ; Engineering Sciences ; Exact sciences and technology ; Inertial ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Magnetic fields ; magnetic material ; Magnetic multilayers ; Magnetism ; Magnetization ; Magnetometers ; Measurements common to several branches of physics and astronomy ; Mechanical instruments, equipment and techniques ; MEMS ; Metrology, measurements and laboratory procedures ; Microelectromechanical systems ; Micromechanical devices ; Micromechanical devices and systems ; Nanostructure ; Perpendicular magnetic anisotropy ; Physics ; Power consumption ; Saturation magnetization ; Sensors ; silicon strain gauge ; Strain gauges ; Three dimensional ; Torque ; Velocity, acceleration and rotation</subject><ispartof>Journal of Micro Electro Mechanical Systems, 2014-04, Vol.23 (2), p.324-333</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-55a8b62ac619f60589dddce019f581bf45b9d496814b5cac00a1923504999b5a3</citedby><cites>FETCH-LOGICAL-c392t-55a8b62ac619f60589dddce019f581bf45b9d496814b5cac00a1923504999b5a3</cites><orcidid>0000-0002-0944-8640 ; 0000-0002-8248-9115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6570487$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6570487$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28438053$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00994158$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ettelt, Dirk</creatorcontrib><creatorcontrib>Rey, Patrice</creatorcontrib><creatorcontrib>Jourdan, Guillaume</creatorcontrib><creatorcontrib>Walther, Arnaud</creatorcontrib><creatorcontrib>Robert, Philippe</creatorcontrib><creatorcontrib>Delamare, Jérôme</creatorcontrib><title>3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs)</title><title>Journal of Micro Electro Mechanical Systems</title><addtitle>JMEMS</addtitle><description>We report on the design, fabrication, and characterization of a microfabricated 3D magnetic field sensor that is suitable for co-integration with inertial sensors to form single-chip inertial measurement units. In contrast to classical resonant MEMS magnetometers, which are based on Lorentz force measurement, our sensor uses permanent magnetic materials and piezoresistive detection with silicon strain gauges of nanometric section, leading to low power consumption and high sensitivity for small sensor size. Thin multilayers of CoFe and PtMn as ferro- and antiferromagnetic materials are integrated within the MEMS fabrication process. Sensitivities of 1.09 V/T for x- and y- components of the magnetic field and 0.124 V/T for z- component of the magnetic field were measured, respectively. To be sensitive to magnetic fields along all three spatial directions, two permanent magnetization directions on the same die are required. Implementation of the two magnetization directions was validated by a measured correlation of 99.7% between x- and y- sensitivity axes. Power consumption of the 3D sensor is for polarization with a 100 μA dc current. With resolutions of 100 nT/√Hz for x- and y-component of the magnetic field and 350 nT/√Hz for z- component, the sensor is suitable for precise measurement of earth magnetic field.</description><subject>3D magnetometer</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Inertial</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Magnetic fields</subject><subject>magnetic material</subject><subject>Magnetic multilayers</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetometers</subject><subject>Measurements common to several branches of physics and astronomy</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>MEMS</subject><subject>Metrology, measurements and laboratory procedures</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Micromechanical devices and systems</subject><subject>Nanostructure</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Physics</subject><subject>Power consumption</subject><subject>Saturation magnetization</subject><subject>Sensors</subject><subject>silicon strain gauge</subject><subject>Strain gauges</subject><subject>Three dimensional</subject><subject>Torque</subject><subject>Velocity, acceleration and rotation</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1vEzEQhlcIJErhD8DFEkJqDxs89vrrWIV-BGXFoeRseb2z4GrjDfamEv8eh0Q59DRfz7ya0VtVH4EuAKj5-r29bR8XjAJfMKY4l-xVdQGmgZqC0K9LToWqFQj1tnqX8xOl0DRaXlQt_0Za9yviHDy5Czj25BFjnhJZTtHjbiZDyTcZSYhkFTHNwY2kRZf3CbcYZ7KJYc7katVu8vX76s3gxowfTvGy2tzd_lw-1Osf96vlzbr23LC5FsLpTjLnJZhBUqFN3_ceaamEhm5oRGf6xkgNTSe885Q6MIwL2hhjOuH4ZXV91P3tRrtLYevSXzu5YB9u1vbQo9SU54V-hsJeHdldmv7sMc92G7LHcXQRp322ILVQinEmC_r5Bfo07VMsn1gQwKSSxhwE2ZHyaco54XC-AKg9uGH_u2EPbtiTG2Xpy0naZe_GIbnoQz5vMt1wTQUv3KcjFxDxPJZC0UYr_g8-1I7a</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Ettelt, Dirk</creator><creator>Rey, Patrice</creator><creator>Jourdan, Guillaume</creator><creator>Walther, Arnaud</creator><creator>Robert, Philippe</creator><creator>Delamare, Jérôme</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0944-8640</orcidid><orcidid>https://orcid.org/0000-0002-8248-9115</orcidid></search><sort><creationdate>20140401</creationdate><title>3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs)</title><author>Ettelt, Dirk ; Rey, Patrice ; Jourdan, Guillaume ; Walther, Arnaud ; Robert, Philippe ; Delamare, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-55a8b62ac619f60589dddce019f581bf45b9d496814b5cac00a1923504999b5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3D magnetometer</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Inertial</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Magnetic fields</topic><topic>magnetic material</topic><topic>Magnetic multilayers</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetometers</topic><topic>Measurements common to several branches of physics and astronomy</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>MEMS</topic><topic>Metrology, measurements and laboratory procedures</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Micromechanical devices and systems</topic><topic>Nanostructure</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Physics</topic><topic>Power consumption</topic><topic>Saturation magnetization</topic><topic>Sensors</topic><topic>silicon strain gauge</topic><topic>Strain gauges</topic><topic>Three dimensional</topic><topic>Torque</topic><topic>Velocity, acceleration and rotation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ettelt, Dirk</creatorcontrib><creatorcontrib>Rey, Patrice</creatorcontrib><creatorcontrib>Jourdan, Guillaume</creatorcontrib><creatorcontrib>Walther, Arnaud</creatorcontrib><creatorcontrib>Robert, Philippe</creatorcontrib><creatorcontrib>Delamare, Jérôme</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Micro Electro Mechanical Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ettelt, Dirk</au><au>Rey, Patrice</au><au>Jourdan, Guillaume</au><au>Walther, Arnaud</au><au>Robert, Philippe</au><au>Delamare, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs)</atitle><jtitle>Journal of Micro Electro Mechanical Systems</jtitle><stitle>JMEMS</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>23</volume><issue>2</issue><spage>324</spage><epage>333</epage><pages>324-333</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>We report on the design, fabrication, and characterization of a microfabricated 3D magnetic field sensor that is suitable for co-integration with inertial sensors to form single-chip inertial measurement units. In contrast to classical resonant MEMS magnetometers, which are based on Lorentz force measurement, our sensor uses permanent magnetic materials and piezoresistive detection with silicon strain gauges of nanometric section, leading to low power consumption and high sensitivity for small sensor size. Thin multilayers of CoFe and PtMn as ferro- and antiferromagnetic materials are integrated within the MEMS fabrication process. Sensitivities of 1.09 V/T for x- and y- components of the magnetic field and 0.124 V/T for z- component of the magnetic field were measured, respectively. To be sensitive to magnetic fields along all three spatial directions, two permanent magnetization directions on the same die are required. Implementation of the two magnetization directions was validated by a measured correlation of 99.7% between x- and y- sensitivity axes. Power consumption of the 3D sensor is for polarization with a 100 μA dc current. With resolutions of 100 nT/√Hz for x- and y-component of the magnetic field and 350 nT/√Hz for z- component, the sensor is suitable for precise measurement of earth magnetic field.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2013.2273362</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0944-8640</orcidid><orcidid>https://orcid.org/0000-0002-8248-9115</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of Micro Electro Mechanical Systems, 2014-04, Vol.23 (2), p.324-333
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_journals_1512676991
source IEEE Electronic Library (IEL)
subjects 3D magnetometer
Electric power
Engineering Sciences
Exact sciences and technology
Inertial
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Magnetic fields
magnetic material
Magnetic multilayers
Magnetism
Magnetization
Magnetometers
Measurements common to several branches of physics and astronomy
Mechanical instruments, equipment and techniques
MEMS
Metrology, measurements and laboratory procedures
Microelectromechanical systems
Micromechanical devices
Micromechanical devices and systems
Nanostructure
Perpendicular magnetic anisotropy
Physics
Power consumption
Saturation magnetization
Sensors
silicon strain gauge
Strain gauges
Three dimensional
Torque
Velocity, acceleration and rotation
title 3D Magnetic Field Sensor Concept for Use in Inertial Measurement Units (IMUs)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Magnetic%20Field%20Sensor%20Concept%20for%20Use%20in%20Inertial%20Measurement%20Units%20(IMUs)&rft.jtitle=Journal%20of%20Micro%20Electro%20Mechanical%20Systems&rft.au=Ettelt,%20Dirk&rft.date=2014-04-01&rft.volume=23&rft.issue=2&rft.spage=324&rft.epage=333&rft.pages=324-333&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2013.2273362&rft_dat=%3Cproquest_RIE%3E1685772326%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512676991&rft_id=info:pmid/&rft_ieee_id=6570487&rfr_iscdi=true