A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN)
The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer fe...
Gespeichert in:
Veröffentlicht in: | Journal of Earth System Science 2014-03, Vol.123 (2), p.395-411 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | 2 |
container_start_page | 395 |
container_title | Journal of Earth System Science |
container_volume | 123 |
creator | Raj, A Stanley SRINIVAS, Y Oliver, D Hudson Muthuraj, D |
description | The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model. |
doi_str_mv | 10.1007/s12040-014-0402-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1512509107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3265389451</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-8fd4c6972ba069d0587179e565633602b12ecace694c4e12b801da2dbc229fb43</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEuXjB7BZYoEhYDuJHY9RxZdUlQUkNstxLq1LSIrtFLW_HpcwsDA9Nzzvne5F6IKSG0qIuPWUkYwkhGZJJEvEAZoQKdJEiOztMM4sT5OMMn6MTrxfEZLyQsgJ2pW46zfQYt3VeAEdON3aHdRYr9eu12aJbYfDEiI24LztO9w3UeyhBROcNbrFDrz1wW5s2OJaB40Hb7sFLl2wjTU2GnMY3A_CV-_ePb4q5_PrM3TU6NbD-S9P0ev93cv0MZk9PzxNy1mi04KFpGjqzHApWKUJlzXJC0GFhJznPE05YRVlYLQBLjOTAWVVQWitWV0ZxmRTZekpuhz3xoc-B_BBrfrBdfGkojllOZGUiGjR0TKu995Bo9bOfmi3VZSofcVqrFjFitW-YrXPsDHjo9stwP3Z_G_oG74Xf0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512509107</pqid></control><display><type>article</type><title>A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN)</title><source>Indian Academy of Sciences</source><source>Springer Nature - Complete Springer Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Raj, A Stanley ; SRINIVAS, Y ; Oliver, D Hudson ; Muthuraj, D</creator><creatorcontrib>Raj, A Stanley ; SRINIVAS, Y ; Oliver, D Hudson ; Muthuraj, D</creatorcontrib><description>The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.</description><identifier>ISSN: 0253-4126</identifier><identifier>EISSN: 0973-774X</identifier><identifier>DOI: 10.1007/s12040-014-0402-7</identifier><language>eng</language><publisher>India: Springer India</publisher><subject>Algorithms ; Earth and Environmental Science ; Earth Sciences ; Electric currents ; Neural networks ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>Journal of Earth System Science, 2014-03, Vol.123 (2), p.395-411</ispartof><rights>Indian Academy of Sciences 2014</rights><rights>Indian Academy of Sciences 2014.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-8fd4c6972ba069d0587179e565633602b12ecace694c4e12b801da2dbc229fb43</citedby><cites>FETCH-LOGICAL-a382t-8fd4c6972ba069d0587179e565633602b12ecace694c4e12b801da2dbc229fb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12040-014-0402-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12040-014-0402-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Raj, A Stanley</creatorcontrib><creatorcontrib>SRINIVAS, Y</creatorcontrib><creatorcontrib>Oliver, D Hudson</creatorcontrib><creatorcontrib>Muthuraj, D</creatorcontrib><title>A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN)</title><title>Journal of Earth System Science</title><addtitle>J Earth Syst Sci</addtitle><description>The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.</description><subject>Algorithms</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electric currents</subject><subject>Neural networks</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>0253-4126</issn><issn>0973-774X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EEuXjB7BZYoEhYDuJHY9RxZdUlQUkNstxLq1LSIrtFLW_HpcwsDA9Nzzvne5F6IKSG0qIuPWUkYwkhGZJJEvEAZoQKdJEiOztMM4sT5OMMn6MTrxfEZLyQsgJ2pW46zfQYt3VeAEdON3aHdRYr9eu12aJbYfDEiI24LztO9w3UeyhBROcNbrFDrz1wW5s2OJaB40Hb7sFLl2wjTU2GnMY3A_CV-_ePb4q5_PrM3TU6NbD-S9P0ev93cv0MZk9PzxNy1mi04KFpGjqzHApWKUJlzXJC0GFhJznPE05YRVlYLQBLjOTAWVVQWitWV0ZxmRTZekpuhz3xoc-B_BBrfrBdfGkojllOZGUiGjR0TKu995Bo9bOfmi3VZSofcVqrFjFitW-YrXPsDHjo9stwP3Z_G_oG74Xf0I</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Raj, A Stanley</creator><creator>SRINIVAS, Y</creator><creator>Oliver, D Hudson</creator><creator>Muthuraj, D</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20140301</creationdate><title>A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN)</title><author>Raj, A Stanley ; SRINIVAS, Y ; Oliver, D Hudson ; Muthuraj, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-8fd4c6972ba069d0587179e565633602b12ecace694c4e12b801da2dbc229fb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electric currents</topic><topic>Neural networks</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raj, A Stanley</creatorcontrib><creatorcontrib>SRINIVAS, Y</creatorcontrib><creatorcontrib>Oliver, D Hudson</creatorcontrib><creatorcontrib>Muthuraj, D</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Earth System Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raj, A Stanley</au><au>SRINIVAS, Y</au><au>Oliver, D Hudson</au><au>Muthuraj, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN)</atitle><jtitle>Journal of Earth System Science</jtitle><stitle>J Earth Syst Sci</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>123</volume><issue>2</issue><spage>395</spage><epage>411</epage><pages>395-411</pages><issn>0253-4126</issn><eissn>0973-774X</eissn><abstract>The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.</abstract><cop>India</cop><pub>Springer India</pub><doi>10.1007/s12040-014-0402-7</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4126 |
ispartof | Journal of Earth System Science, 2014-03, Vol.123 (2), p.395-411 |
issn | 0253-4126 0973-774X |
language | eng |
recordid | cdi_proquest_journals_1512509107 |
source | Indian Academy of Sciences; Springer Nature - Complete Springer Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Earth and Environmental Science Earth Sciences Electric currents Neural networks Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics |
title | A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20and%20generalized%20approach%20in%20the%20inversion%20of%20geoelectrical%20resistivity%20data%20using%20Artificial%20Neural%20Networks%20(ANN)&rft.jtitle=Journal%20of%20Earth%20System%20Science&rft.au=Raj,%20A%20Stanley&rft.date=2014-03-01&rft.volume=123&rft.issue=2&rft.spage=395&rft.epage=411&rft.pages=395-411&rft.issn=0253-4126&rft.eissn=0973-774X&rft_id=info:doi/10.1007/s12040-014-0402-7&rft_dat=%3Cproquest_cross%3E3265389451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512509107&rft_id=info:pmid/&rfr_iscdi=true |