Algorithms for Battery Utilization in Electric Vehicles

We consider the problem of utilizing a pack of m batteries serving n current demands in electric vehicles. When serving a demand, the current allocation might be split among the batteries in the pack. A battery's life depends on the discharge current used for supplying the requests. Any deviati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied artificial intelligence 2014-03, Vol.28 (3), p.272-291
Hauptverfasser: Adany, Ron, Tamir, Tami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 3
container_start_page 272
container_title Applied artificial intelligence
container_volume 28
creator Adany, Ron
Tamir, Tami
description We consider the problem of utilizing a pack of m batteries serving n current demands in electric vehicles. When serving a demand, the current allocation might be split among the batteries in the pack. A battery's life depends on the discharge current used for supplying the requests. Any deviation from the optimal discharge-current is associated with a penalty. Thus, the problem is to serve an online sequence of current requests in a way that minimizes the total penalty associated with the service. We show that the offline problem, for which the sequence of current demands is known in advance, is strongly NP-hard and hard to approximate within an additive gap of Ω(m) from the optimum. For the online problem, we present a competitive algorithm associated with the redundant penalty at most m. Finally, we provide a lower bound of 1.5 for the multiplicative competitive ratio of any online algorithm.
doi_str_mv 10.1080/08839514.2014.883906
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1510626903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3258109321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-100e5911edb22796d421c4d5f464311b30c430797767d740d7652ffb0f3d70203</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgisbCknD9iJxMqqHxIlVgoq5U6DnXlxMV2hcqvx1FgYWC50-me93R6ELrEMMNQwg2UJa0KzGYEUhkG4EdoknYi5wUrjtFkQPKBOUVnIWwBAAuBJ0jM7bvzJm66kLXOZ3d1jNofslU01nzV0bg-M322sFpFb1T2pjdGWR3O0Ulb26AvfvoUrR4Wr_dP-fLl8fl-vswVxSLmGEAXFca6WRMiKt4wghVripZxRjFeU1CMgqiE4KIRDBrBC9K2a2hpI4AAnaLr8e7Ou4-9DlF2Jihtbd1rtw8SFxQqUbKSJPTqD7p1e9-n7xKFgRNeAU0UGynlXQhet3LnTVf7g8QgB5vy16YcbMrRZordjjHTJ01d_em8bWSsD9b51te9MkHSfy98A05TeGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510626903</pqid></control><display><type>article</type><title>Algorithms for Battery Utilization in Electric Vehicles</title><source>EBSCOhost Business Source Complete</source><creator>Adany, Ron ; Tamir, Tami</creator><creatorcontrib>Adany, Ron ; Tamir, Tami</creatorcontrib><description>We consider the problem of utilizing a pack of m batteries serving n current demands in electric vehicles. When serving a demand, the current allocation might be split among the batteries in the pack. A battery's life depends on the discharge current used for supplying the requests. Any deviation from the optimal discharge-current is associated with a penalty. Thus, the problem is to serve an online sequence of current requests in a way that minimizes the total penalty associated with the service. We show that the offline problem, for which the sequence of current demands is known in advance, is strongly NP-hard and hard to approximate within an additive gap of Ω(m) from the optimum. For the online problem, we present a competitive algorithm associated with the redundant penalty at most m. Finally, we provide a lower bound of 1.5 for the multiplicative competitive ratio of any online algorithm.</description><identifier>ISSN: 0883-9514</identifier><identifier>EISSN: 1087-6545</identifier><identifier>DOI: 10.1080/08839514.2014.883906</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Algorithms ; Batteries ; Demand ; Electric batteries ; Electric discharges ; Electric vehicles ; On-line systems ; Online ; Optimization</subject><ispartof>Applied artificial intelligence, 2014-03, Vol.28 (3), p.272-291</ispartof><rights>Copyright © 2014 Taylor &amp; Francis Group, LLC 2014</rights><rights>Copyright Taylor &amp; Francis Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-100e5911edb22796d421c4d5f464311b30c430797767d740d7652ffb0f3d70203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Adany, Ron</creatorcontrib><creatorcontrib>Tamir, Tami</creatorcontrib><title>Algorithms for Battery Utilization in Electric Vehicles</title><title>Applied artificial intelligence</title><description>We consider the problem of utilizing a pack of m batteries serving n current demands in electric vehicles. When serving a demand, the current allocation might be split among the batteries in the pack. A battery's life depends on the discharge current used for supplying the requests. Any deviation from the optimal discharge-current is associated with a penalty. Thus, the problem is to serve an online sequence of current requests in a way that minimizes the total penalty associated with the service. We show that the offline problem, for which the sequence of current demands is known in advance, is strongly NP-hard and hard to approximate within an additive gap of Ω(m) from the optimum. For the online problem, we present a competitive algorithm associated with the redundant penalty at most m. Finally, we provide a lower bound of 1.5 for the multiplicative competitive ratio of any online algorithm.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Demand</subject><subject>Electric batteries</subject><subject>Electric discharges</subject><subject>Electric vehicles</subject><subject>On-line systems</subject><subject>Online</subject><subject>Optimization</subject><issn>0883-9514</issn><issn>1087-6545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgisbCknD9iJxMqqHxIlVgoq5U6DnXlxMV2hcqvx1FgYWC50-me93R6ELrEMMNQwg2UJa0KzGYEUhkG4EdoknYi5wUrjtFkQPKBOUVnIWwBAAuBJ0jM7bvzJm66kLXOZ3d1jNofslU01nzV0bg-M322sFpFb1T2pjdGWR3O0Ulb26AvfvoUrR4Wr_dP-fLl8fl-vswVxSLmGEAXFca6WRMiKt4wghVripZxRjFeU1CMgqiE4KIRDBrBC9K2a2hpI4AAnaLr8e7Ou4-9DlF2Jihtbd1rtw8SFxQqUbKSJPTqD7p1e9-n7xKFgRNeAU0UGynlXQhet3LnTVf7g8QgB5vy16YcbMrRZordjjHTJ01d_em8bWSsD9b51te9MkHSfy98A05TeGc</recordid><startdate>20140316</startdate><enddate>20140316</enddate><creator>Adany, Ron</creator><creator>Tamir, Tami</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140316</creationdate><title>Algorithms for Battery Utilization in Electric Vehicles</title><author>Adany, Ron ; Tamir, Tami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-100e5911edb22796d421c4d5f464311b30c430797767d740d7652ffb0f3d70203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Demand</topic><topic>Electric batteries</topic><topic>Electric discharges</topic><topic>Electric vehicles</topic><topic>On-line systems</topic><topic>Online</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adany, Ron</creatorcontrib><creatorcontrib>Tamir, Tami</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Applied artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adany, Ron</au><au>Tamir, Tami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms for Battery Utilization in Electric Vehicles</atitle><jtitle>Applied artificial intelligence</jtitle><date>2014-03-16</date><risdate>2014</risdate><volume>28</volume><issue>3</issue><spage>272</spage><epage>291</epage><pages>272-291</pages><issn>0883-9514</issn><eissn>1087-6545</eissn><abstract>We consider the problem of utilizing a pack of m batteries serving n current demands in electric vehicles. When serving a demand, the current allocation might be split among the batteries in the pack. A battery's life depends on the discharge current used for supplying the requests. Any deviation from the optimal discharge-current is associated with a penalty. Thus, the problem is to serve an online sequence of current requests in a way that minimizes the total penalty associated with the service. We show that the offline problem, for which the sequence of current demands is known in advance, is strongly NP-hard and hard to approximate within an additive gap of Ω(m) from the optimum. For the online problem, we present a competitive algorithm associated with the redundant penalty at most m. Finally, we provide a lower bound of 1.5 for the multiplicative competitive ratio of any online algorithm.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/08839514.2014.883906</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-9514
ispartof Applied artificial intelligence, 2014-03, Vol.28 (3), p.272-291
issn 0883-9514
1087-6545
language eng
recordid cdi_proquest_journals_1510626903
source EBSCOhost Business Source Complete
subjects Algorithms
Batteries
Demand
Electric batteries
Electric discharges
Electric vehicles
On-line systems
Online
Optimization
title Algorithms for Battery Utilization in Electric Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20for%20Battery%20Utilization%20in%20Electric%20Vehicles&rft.jtitle=Applied%20artificial%20intelligence&rft.au=Adany,%20Ron&rft.date=2014-03-16&rft.volume=28&rft.issue=3&rft.spage=272&rft.epage=291&rft.pages=272-291&rft.issn=0883-9514&rft.eissn=1087-6545&rft_id=info:doi/10.1080/08839514.2014.883906&rft_dat=%3Cproquest_infor%3E3258109321%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510626903&rft_id=info:pmid/&rfr_iscdi=true