Magnetic Circuit Design and Multiphysics Analysis of a Novel MR Damper for Applications under High Velocity
A novel magnetorheological (MR) damper with a multistage piston and independent input currents is designed and analyzed. The equivalent magnetic circuit model is investigated along with the relation between magnetic induction density in the working gap and input currents of the electromagnetic coils...
Gespeichert in:
Veröffentlicht in: | Advances in Mechanical Engineering 2014-01, Vol.6, p.402501 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 402501 |
container_title | Advances in Mechanical Engineering |
container_volume | 6 |
creator | Zheng, Jiajia Li, Zhaochun Koo, JeongHoi Wang, Jiong |
description | A novel magnetorheological (MR) damper with a multistage piston and independent input currents is designed and analyzed. The equivalent magnetic circuit model is investigated along with the relation between magnetic induction density in the working gap and input currents of the electromagnetic coils. Finite element method (FEM) is used to analyze the distribution of magnetic field through the MR fluid region. Considering the real situation, coupling equations are presented to analyze the electromagnetic-thermal-flow coupling problems. Software COMSOL is used to analyze the multiphysics, that is, electromagnetic, thermal dynamic, and fluid mechanic. A measurement index involving total damping force, dynamic range, and induction time needed for magnetic coil is put forward to evaluate the performance of the novel multistage MR damper. The simulation results show that it is promising for applications under high velocity and works better when more electromagnetic coils are applied with input currents separately. Besides, in order to reduce energy consumption, it is recommended to apply more electromagnetic coils with relative low currents based on the analysis of pressure drop along the annular gap. |
doi_str_mv | 10.1155/2014/402501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_1509660159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1155_2014/402501</sage_id><doaj_id>oai_doaj_org_article_2bd15b983a3e418caeb69d91fcf6e0e1</doaj_id><sourcerecordid>3255164731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a496t-ed59ee591eeacf8f7c4393c54a73bbd28ec0947f0ff5f77beab73ad4d2cd33063</originalsourceid><addsrcrecordid>eNptkd1L5TAQxYvsgqI--Q8EfFmQuybNR5vHy3X9AO8uiPoapsmkxq1NTVrh_vdb7SL7sE9zOPw4w8wpihNGvzMm5XlJmTgXtJSU7RUHTNXVqmaCfvnUvNwvjnMODZVUUaq0Pih-b6HtcQyWbEKyUxjJBebQ9gR6R7ZTN4bhaZeDzWTdQzerTKInQH7GN-zI9o5cwMuAifiYyHoYumBhDLHPZOrdbF-H9ok8YhdtGHdHxVcPXcbjv_OweLj8cb-5Xt3-urrZrG9XILQaV-ikRpSaIYL1ta-s4JpbKaDiTePKGi3VovLUe-mrqkFoKg5OuNI6zqnih8XNkusiPJshhRdIOxMhmA8jptZAmk_u0JSNY7LRNQeOgtUWsFHaaeatV0iRzVmnS9aQ4uuEeTTPcUrzK7JhkmqlKJN6ps4WyqaYc0L_uZVR816OeS_HLOXM9LeFztDiP3n_Qf8A81GODg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1509660159</pqid></control><display><type>article</type><title>Magnetic Circuit Design and Multiphysics Analysis of a Novel MR Damper for Applications under High Velocity</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zheng, Jiajia ; Li, Zhaochun ; Koo, JeongHoi ; Wang, Jiong</creator><creatorcontrib>Zheng, Jiajia ; Li, Zhaochun ; Koo, JeongHoi ; Wang, Jiong</creatorcontrib><description>A novel magnetorheological (MR) damper with a multistage piston and independent input currents is designed and analyzed. The equivalent magnetic circuit model is investigated along with the relation between magnetic induction density in the working gap and input currents of the electromagnetic coils. Finite element method (FEM) is used to analyze the distribution of magnetic field through the MR fluid region. Considering the real situation, coupling equations are presented to analyze the electromagnetic-thermal-flow coupling problems. Software COMSOL is used to analyze the multiphysics, that is, electromagnetic, thermal dynamic, and fluid mechanic. A measurement index involving total damping force, dynamic range, and induction time needed for magnetic coil is put forward to evaluate the performance of the novel multistage MR damper. The simulation results show that it is promising for applications under high velocity and works better when more electromagnetic coils are applied with input currents separately. Besides, in order to reduce energy consumption, it is recommended to apply more electromagnetic coils with relative low currents based on the analysis of pressure drop along the annular gap.</description><identifier>ISSN: 1687-8132</identifier><identifier>ISSN: 1687-8140</identifier><identifier>EISSN: 1687-8140</identifier><identifier>EISSN: 1687-8132</identifier><identifier>DOI: 10.1155/2014/402501</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Design ; Finite element analysis ; Flow velocity ; Fluids ; Investigations ; Magnetic fields ; Mechanical engineering ; Wire</subject><ispartof>Advances in Mechanical Engineering, 2014-01, Vol.6, p.402501</ispartof><rights>2014 Jiajia Zheng et al.</rights><rights>Copyright © 2014 Jiajia Zheng et al. Jiajia Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a496t-ed59ee591eeacf8f7c4393c54a73bbd28ec0947f0ff5f77beab73ad4d2cd33063</citedby><cites>FETCH-LOGICAL-a496t-ed59ee591eeacf8f7c4393c54a73bbd28ec0947f0ff5f77beab73ad4d2cd33063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1155/2014/402501$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1155/2014/402501$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,21945,27830,27901,27902,44921,45309</link.rule.ids></links><search><creatorcontrib>Zheng, Jiajia</creatorcontrib><creatorcontrib>Li, Zhaochun</creatorcontrib><creatorcontrib>Koo, JeongHoi</creatorcontrib><creatorcontrib>Wang, Jiong</creatorcontrib><title>Magnetic Circuit Design and Multiphysics Analysis of a Novel MR Damper for Applications under High Velocity</title><title>Advances in Mechanical Engineering</title><description>A novel magnetorheological (MR) damper with a multistage piston and independent input currents is designed and analyzed. The equivalent magnetic circuit model is investigated along with the relation between magnetic induction density in the working gap and input currents of the electromagnetic coils. Finite element method (FEM) is used to analyze the distribution of magnetic field through the MR fluid region. Considering the real situation, coupling equations are presented to analyze the electromagnetic-thermal-flow coupling problems. Software COMSOL is used to analyze the multiphysics, that is, electromagnetic, thermal dynamic, and fluid mechanic. A measurement index involving total damping force, dynamic range, and induction time needed for magnetic coil is put forward to evaluate the performance of the novel multistage MR damper. The simulation results show that it is promising for applications under high velocity and works better when more electromagnetic coils are applied with input currents separately. Besides, in order to reduce energy consumption, it is recommended to apply more electromagnetic coils with relative low currents based on the analysis of pressure drop along the annular gap.</description><subject>Design</subject><subject>Finite element analysis</subject><subject>Flow velocity</subject><subject>Fluids</subject><subject>Investigations</subject><subject>Magnetic fields</subject><subject>Mechanical engineering</subject><subject>Wire</subject><issn>1687-8132</issn><issn>1687-8140</issn><issn>1687-8140</issn><issn>1687-8132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkd1L5TAQxYvsgqI--Q8EfFmQuybNR5vHy3X9AO8uiPoapsmkxq1NTVrh_vdb7SL7sE9zOPw4w8wpihNGvzMm5XlJmTgXtJSU7RUHTNXVqmaCfvnUvNwvjnMODZVUUaq0Pih-b6HtcQyWbEKyUxjJBebQ9gR6R7ZTN4bhaZeDzWTdQzerTKInQH7GN-zI9o5cwMuAifiYyHoYumBhDLHPZOrdbF-H9ok8YhdtGHdHxVcPXcbjv_OweLj8cb-5Xt3-urrZrG9XILQaV-ikRpSaIYL1ta-s4JpbKaDiTePKGi3VovLUe-mrqkFoKg5OuNI6zqnih8XNkusiPJshhRdIOxMhmA8jptZAmk_u0JSNY7LRNQeOgtUWsFHaaeatV0iRzVmnS9aQ4uuEeTTPcUrzK7JhkmqlKJN6ps4WyqaYc0L_uZVR816OeS_HLOXM9LeFztDiP3n_Qf8A81GODg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Zheng, Jiajia</creator><creator>Li, Zhaochun</creator><creator>Koo, JeongHoi</creator><creator>Wang, Jiong</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Magnetic Circuit Design and Multiphysics Analysis of a Novel MR Damper for Applications under High Velocity</title><author>Zheng, Jiajia ; Li, Zhaochun ; Koo, JeongHoi ; Wang, Jiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a496t-ed59ee591eeacf8f7c4393c54a73bbd28ec0947f0ff5f77beab73ad4d2cd33063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Design</topic><topic>Finite element analysis</topic><topic>Flow velocity</topic><topic>Fluids</topic><topic>Investigations</topic><topic>Magnetic fields</topic><topic>Mechanical engineering</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jiajia</creatorcontrib><creatorcontrib>Li, Zhaochun</creatorcontrib><creatorcontrib>Koo, JeongHoi</creatorcontrib><creatorcontrib>Wang, Jiong</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Jiajia</au><au>Li, Zhaochun</au><au>Koo, JeongHoi</au><au>Wang, Jiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Circuit Design and Multiphysics Analysis of a Novel MR Damper for Applications under High Velocity</atitle><jtitle>Advances in Mechanical Engineering</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>6</volume><spage>402501</spage><pages>402501-</pages><issn>1687-8132</issn><issn>1687-8140</issn><eissn>1687-8140</eissn><eissn>1687-8132</eissn><abstract>A novel magnetorheological (MR) damper with a multistage piston and independent input currents is designed and analyzed. The equivalent magnetic circuit model is investigated along with the relation between magnetic induction density in the working gap and input currents of the electromagnetic coils. Finite element method (FEM) is used to analyze the distribution of magnetic field through the MR fluid region. Considering the real situation, coupling equations are presented to analyze the electromagnetic-thermal-flow coupling problems. Software COMSOL is used to analyze the multiphysics, that is, electromagnetic, thermal dynamic, and fluid mechanic. A measurement index involving total damping force, dynamic range, and induction time needed for magnetic coil is put forward to evaluate the performance of the novel multistage MR damper. The simulation results show that it is promising for applications under high velocity and works better when more electromagnetic coils are applied with input currents separately. Besides, in order to reduce energy consumption, it is recommended to apply more electromagnetic coils with relative low currents based on the analysis of pressure drop along the annular gap.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1155/2014/402501</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-8132 |
ispartof | Advances in Mechanical Engineering, 2014-01, Vol.6, p.402501 |
issn | 1687-8132 1687-8140 1687-8140 1687-8132 |
language | eng |
recordid | cdi_proquest_journals_1509660159 |
source | DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Design Finite element analysis Flow velocity Fluids Investigations Magnetic fields Mechanical engineering Wire |
title | Magnetic Circuit Design and Multiphysics Analysis of a Novel MR Damper for Applications under High Velocity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Circuit%20Design%20and%20Multiphysics%20Analysis%20of%20a%20Novel%20MR%20Damper%20for%20Applications%20under%20High%20Velocity&rft.jtitle=Advances%20in%20Mechanical%20Engineering&rft.au=Zheng,%20Jiajia&rft.date=2014-01-01&rft.volume=6&rft.spage=402501&rft.pages=402501-&rft.issn=1687-8132&rft.eissn=1687-8140&rft_id=info:doi/10.1155/2014/402501&rft_dat=%3Cproquest_doaj_%3E3255164731%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1509660159&rft_id=info:pmid/&rft_sage_id=10.1155_2014/402501&rft_doaj_id=oai_doaj_org_article_2bd15b983a3e418caeb69d91fcf6e0e1&rfr_iscdi=true |