Online solution of nonquadratic two-player zero-sum games arising in the H ∞ control of constrained input systems
SUMMARYIn this paper, we present an online learning algorithm to find the solution to the H ∞ control problem of continuous‐time systems with input constraints. A suitable nonquadratic functional is utilized to encode the input constraints into the H ∞ control problem, and the related H ∞ control...
Gespeichert in:
Veröffentlicht in: | International journal of adaptive control and signal processing 2014-03, Vol.28 (3-5), p.232-254 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 3-5 |
container_start_page | 232 |
container_title | International journal of adaptive control and signal processing |
container_volume | 28 |
creator | Modares, Hamidreza Lewis, Frank L. Sistani, Mohammad-Bagher Naghibi |
description | SUMMARYIn this paper, we present an online learning algorithm to find the solution to the H ∞ control problem of continuous‐time systems with input constraints. A suitable nonquadratic functional is utilized to encode the input constraints into the H ∞ control problem, and the related H ∞ control problem is formulated as a two‐player zero‐sum game with a nonquadratic performance. Then, a policy iteration algorithm on an actor–critic–disturbance structure is developed to solve the Hamilton–Jacobi–Isaacs (HJI) equation associated with this nonquadratic zero‐sum game. That is, three NN approximators, namely, actor, critic, and disturbance, are tuned online and simultaneously for approximating the HJI solution. The value of the actor and disturbance policies is approximated continuously by the critic NN, and then on the basis of this value estimate, the actor and disturbance NNs are updated in real time to improve their policies. The disturbance tries to make the worst possible disturbance, whereas the actor tries to make the best control input. A persistence of excitation condition is shown to guarantee convergence to the optimal saddle point solution. Stability of the closed‐loop system is also guaranteed. A simulation on a nonlinear benchmark problem is performed to validate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/acs.2348 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1508331087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3249454941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2468-c427c7ed8440cddea6cf6b14b3902f30700b230db13aa4ea94d57346e9386b9c3</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYP8BECXrysTjbpfhxL0Sp-ISoeQzabranbpE2yaD151Jfw4XwSUyqCBy-TgfyYYf4I7RE4JADpkZD-MKWsWEM9AmWZEEL666gHRQlJRtN8E215PwGIf4T20Mu1abVR2Nu2C9oabBtsrJl3onYiaInDs01mrVgoh1-Vs4nvpngspspj4bTXZoy1weFR4dOvt4-v989YsbQmONsuZ8XWByfiijrCWRewX_igpn4HbTSi9Wr3591G9yfHd8PT5OJ6dDYcXCQyZVmRSJbmMld1wRjIulYik01WEVbREtKGQg5QpRTqilAhmBIlq_s5ZZkqaZFVpaTbaH81d-bsvFM-8IntnIkrOelDQSmBIo_qYKWks9471fCZ01PhFpwAX-bKY658mWukyYo-61Yt_nV8MLz963W8--XXC_fEs5zmff5wNeJwc04fhuklL-g3WrOMhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508331087</pqid></control><display><type>article</type><title>Online solution of nonquadratic two-player zero-sum games arising in the H ∞ control of constrained input systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Modares, Hamidreza ; Lewis, Frank L. ; Sistani, Mohammad-Bagher Naghibi</creator><creatorcontrib>Modares, Hamidreza ; Lewis, Frank L. ; Sistani, Mohammad-Bagher Naghibi</creatorcontrib><description>SUMMARYIn this paper, we present an online learning algorithm to find the solution to the H ∞ control problem of continuous‐time systems with input constraints. A suitable nonquadratic functional is utilized to encode the input constraints into the H ∞ control problem, and the related H ∞ control problem is formulated as a two‐player zero‐sum game with a nonquadratic performance. Then, a policy iteration algorithm on an actor–critic–disturbance structure is developed to solve the Hamilton–Jacobi–Isaacs (HJI) equation associated with this nonquadratic zero‐sum game. That is, three NN approximators, namely, actor, critic, and disturbance, are tuned online and simultaneously for approximating the HJI solution. The value of the actor and disturbance policies is approximated continuously by the critic NN, and then on the basis of this value estimate, the actor and disturbance NNs are updated in real time to improve their policies. The disturbance tries to make the worst possible disturbance, whereas the actor tries to make the best control input. A persistence of excitation condition is shown to guarantee convergence to the optimal saddle point solution. Stability of the closed‐loop system is also guaranteed. A simulation on a nonlinear benchmark problem is performed to validate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0890-6327</identifier><identifier>EISSN: 1099-1115</identifier><identifier>DOI: 10.1002/acs.2348</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>H ∞ control ; input constraints ; neural networks ; policy iteration ; two-player zero-sum games</subject><ispartof>International journal of adaptive control and signal processing, 2014-03, Vol.28 (3-5), p.232-254</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2468-c427c7ed8440cddea6cf6b14b3902f30700b230db13aa4ea94d57346e9386b9c3</citedby><cites>FETCH-LOGICAL-c2468-c427c7ed8440cddea6cf6b14b3902f30700b230db13aa4ea94d57346e9386b9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Facs.2348$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Facs.2348$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Modares, Hamidreza</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Sistani, Mohammad-Bagher Naghibi</creatorcontrib><title>Online solution of nonquadratic two-player zero-sum games arising in the H ∞ control of constrained input systems</title><title>International journal of adaptive control and signal processing</title><addtitle>Int. J. Adapt. Control Signal Process</addtitle><description>SUMMARYIn this paper, we present an online learning algorithm to find the solution to the H ∞ control problem of continuous‐time systems with input constraints. A suitable nonquadratic functional is utilized to encode the input constraints into the H ∞ control problem, and the related H ∞ control problem is formulated as a two‐player zero‐sum game with a nonquadratic performance. Then, a policy iteration algorithm on an actor–critic–disturbance structure is developed to solve the Hamilton–Jacobi–Isaacs (HJI) equation associated with this nonquadratic zero‐sum game. That is, three NN approximators, namely, actor, critic, and disturbance, are tuned online and simultaneously for approximating the HJI solution. The value of the actor and disturbance policies is approximated continuously by the critic NN, and then on the basis of this value estimate, the actor and disturbance NNs are updated in real time to improve their policies. The disturbance tries to make the worst possible disturbance, whereas the actor tries to make the best control input. A persistence of excitation condition is shown to guarantee convergence to the optimal saddle point solution. Stability of the closed‐loop system is also guaranteed. A simulation on a nonlinear benchmark problem is performed to validate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.</description><subject>H ∞ control</subject><subject>input constraints</subject><subject>neural networks</subject><subject>policy iteration</subject><subject>two-player zero-sum games</subject><issn>0890-6327</issn><issn>1099-1115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYP8BECXrysTjbpfhxL0Sp-ISoeQzabranbpE2yaD151Jfw4XwSUyqCBy-TgfyYYf4I7RE4JADpkZD-MKWsWEM9AmWZEEL666gHRQlJRtN8E215PwGIf4T20Mu1abVR2Nu2C9oabBtsrJl3onYiaInDs01mrVgoh1-Vs4nvpngspspj4bTXZoy1weFR4dOvt4-v989YsbQmONsuZ8XWByfiijrCWRewX_igpn4HbTSi9Wr3591G9yfHd8PT5OJ6dDYcXCQyZVmRSJbmMld1wRjIulYik01WEVbREtKGQg5QpRTqilAhmBIlq_s5ZZkqaZFVpaTbaH81d-bsvFM-8IntnIkrOelDQSmBIo_qYKWks9471fCZ01PhFpwAX-bKY658mWukyYo-61Yt_nV8MLz963W8--XXC_fEs5zmff5wNeJwc04fhuklL-g3WrOMhQ</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Modares, Hamidreza</creator><creator>Lewis, Frank L.</creator><creator>Sistani, Mohammad-Bagher Naghibi</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201403</creationdate><title>Online solution of nonquadratic two-player zero-sum games arising in the H ∞ control of constrained input systems</title><author>Modares, Hamidreza ; Lewis, Frank L. ; Sistani, Mohammad-Bagher Naghibi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2468-c427c7ed8440cddea6cf6b14b3902f30700b230db13aa4ea94d57346e9386b9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>H ∞ control</topic><topic>input constraints</topic><topic>neural networks</topic><topic>policy iteration</topic><topic>two-player zero-sum games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Modares, Hamidreza</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Sistani, Mohammad-Bagher Naghibi</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of adaptive control and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Modares, Hamidreza</au><au>Lewis, Frank L.</au><au>Sistani, Mohammad-Bagher Naghibi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online solution of nonquadratic two-player zero-sum games arising in the H ∞ control of constrained input systems</atitle><jtitle>International journal of adaptive control and signal processing</jtitle><addtitle>Int. J. Adapt. Control Signal Process</addtitle><date>2014-03</date><risdate>2014</risdate><volume>28</volume><issue>3-5</issue><spage>232</spage><epage>254</epage><pages>232-254</pages><issn>0890-6327</issn><eissn>1099-1115</eissn><abstract>SUMMARYIn this paper, we present an online learning algorithm to find the solution to the H ∞ control problem of continuous‐time systems with input constraints. A suitable nonquadratic functional is utilized to encode the input constraints into the H ∞ control problem, and the related H ∞ control problem is formulated as a two‐player zero‐sum game with a nonquadratic performance. Then, a policy iteration algorithm on an actor–critic–disturbance structure is developed to solve the Hamilton–Jacobi–Isaacs (HJI) equation associated with this nonquadratic zero‐sum game. That is, three NN approximators, namely, actor, critic, and disturbance, are tuned online and simultaneously for approximating the HJI solution. The value of the actor and disturbance policies is approximated continuously by the critic NN, and then on the basis of this value estimate, the actor and disturbance NNs are updated in real time to improve their policies. The disturbance tries to make the worst possible disturbance, whereas the actor tries to make the best control input. A persistence of excitation condition is shown to guarantee convergence to the optimal saddle point solution. Stability of the closed‐loop system is also guaranteed. A simulation on a nonlinear benchmark problem is performed to validate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/acs.2348</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-6327 |
ispartof | International journal of adaptive control and signal processing, 2014-03, Vol.28 (3-5), p.232-254 |
issn | 0890-6327 1099-1115 |
language | eng |
recordid | cdi_proquest_journals_1508331087 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | H ∞ control input constraints neural networks policy iteration two-player zero-sum games |
title | Online solution of nonquadratic two-player zero-sum games arising in the H ∞ control of constrained input systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20solution%20of%20nonquadratic%20two-player%20zero-sum%20games%20arising%20in%20the%20H%E2%80%89%E2%88%9E%E2%80%89%20control%20of%20constrained%20input%20systems&rft.jtitle=International%20journal%20of%20adaptive%20control%20and%20signal%20processing&rft.au=Modares,%20Hamidreza&rft.date=2014-03&rft.volume=28&rft.issue=3-5&rft.spage=232&rft.epage=254&rft.pages=232-254&rft.issn=0890-6327&rft.eissn=1099-1115&rft_id=info:doi/10.1002/acs.2348&rft_dat=%3Cproquest_cross%3E3249454941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508331087&rft_id=info:pmid/&rfr_iscdi=true |