Study on the Extraction Method of Deformation Influence Factors of Flexible Material Processing Based on Information Entropy

Through analyzing the flexible material processing (FMP) deformation factors, it is pointed out that without a choice of deformation influence quantity would increase the compensation control predict model system input. In order to reduce the count of spatial dimensions of knowledge, we proposed the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Mechanical Engineering 2014-01, Vol.6, p.547947
Hauptverfasser: Deng, Yaohua, Lu, Qiwen, Chen, Jiayuan, Chen, Sicheng, Wu, Liming, Tang, Luxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 547947
container_title Advances in Mechanical Engineering
container_volume 6
creator Deng, Yaohua
Lu, Qiwen
Chen, Jiayuan
Chen, Sicheng
Wu, Liming
Tang, Luxin
description Through analyzing the flexible material processing (FMP) deformation factors, it is pointed out that without a choice of deformation influence quantity would increase the compensation control predict model system input. In order to reduce the count of spatial dimensions of knowledge, we proposed the method by taking the use of FMP deformation compensation control knowledge extraction, which is based on decision table (DT) attribute reduction, deriving the algorithm that is based on information entropy attribute importance, to find the dependencies between attributes through attribute significance (AS) and to extract the intrinsic attributes which is the most close to deformation compensation control decision making. Finally, through an example presented in this paper to verify the efficiency of RS control knowledge extraction method. Compared with the Pawlak method and genetic extraction algorithm, the prediction accuracy of after reduction data is 0.55% less than Pawlak method and 3.64% higher than the genetic extraction algorithm; however, the time consumption of forecast calculation is 30.3% and 11.53% less than Pawlak method and genetic extraction algorithm, respectively. Knowledge extraction entropy methods presented in this paper have the advantages of fast calculating speed and high accuracy and are suitable for FMP deformation compensation of online control.
doi_str_mv 10.1155/2014/547947
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_1507747309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1155_2014/547947</sage_id><doaj_id>oai_doaj_org_article_bfe2380954734db69981e492c8c502c2</doaj_id><sourcerecordid>3247619311</sourcerecordid><originalsourceid>FETCH-LOGICAL-a531t-ffd835b636b21515a7fe5c0cf8ce204256efcaa24db4c31788dbcf724c63b2dd3</originalsourceid><addsrcrecordid>eNptkU1LAzEQhhdRUNSTfyDgRZBqPnezRz9aLSgK6jlkk0m7sm5qkoIFf7xpV4oHT0mGZ54J8xbFCcEXhAhxSTHhl4JXNa92igNSymokCce72zuj-8VxjG2DBS4xLuv6oPh-SUu7Qr5HaQ5o_JWCNqnNz0dIc2-Rd-gWnA8felOd9q5bQm8ATTLnQ1wDkw6-2qYD9KgThFZ36Dl4A3lSP0PXOoJFQ-tWM-5T8IvVUbHndBfh-Pc8LN4m49eb-9HD09305uphpAUjaeSclUw0JSsbSgQRunIgDDZOGqCYU1GCM1pTbhtuGKmktI1xFeWmZA21lh0W08FrvX5Xi9B-6LBSXrdqU_BhpnRIrelANQ4ok7jOe2TZl3ckCfCaGmkEpoZm1-ngWgT_uYSY1Ltfhj5_XxGBqyr34TpT5wNlgo8xgNtOJVit01LrtNSQVqbPBjrqGfzx_YP-ABqnk7k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507747309</pqid></control><display><type>article</type><title>Study on the Extraction Method of Deformation Influence Factors of Flexible Material Processing Based on Information Entropy</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Deng, Yaohua ; Lu, Qiwen ; Chen, Jiayuan ; Chen, Sicheng ; Wu, Liming ; Tang, Luxin</creator><creatorcontrib>Deng, Yaohua ; Lu, Qiwen ; Chen, Jiayuan ; Chen, Sicheng ; Wu, Liming ; Tang, Luxin</creatorcontrib><description>Through analyzing the flexible material processing (FMP) deformation factors, it is pointed out that without a choice of deformation influence quantity would increase the compensation control predict model system input. In order to reduce the count of spatial dimensions of knowledge, we proposed the method by taking the use of FMP deformation compensation control knowledge extraction, which is based on decision table (DT) attribute reduction, deriving the algorithm that is based on information entropy attribute importance, to find the dependencies between attributes through attribute significance (AS) and to extract the intrinsic attributes which is the most close to deformation compensation control decision making. Finally, through an example presented in this paper to verify the efficiency of RS control knowledge extraction method. Compared with the Pawlak method and genetic extraction algorithm, the prediction accuracy of after reduction data is 0.55% less than Pawlak method and 3.64% higher than the genetic extraction algorithm; however, the time consumption of forecast calculation is 30.3% and 11.53% less than Pawlak method and genetic extraction algorithm, respectively. Knowledge extraction entropy methods presented in this paper have the advantages of fast calculating speed and high accuracy and are suitable for FMP deformation compensation of online control.</description><identifier>ISSN: 1687-8132</identifier><identifier>ISSN: 1687-8140</identifier><identifier>EISSN: 1687-8140</identifier><identifier>EISSN: 1687-8132</identifier><identifier>DOI: 10.1155/2014/547947</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Accuracy ; Algorithms ; Compensation ; Decision making ; Deformation ; Neural networks ; Roads &amp; highways</subject><ispartof>Advances in Mechanical Engineering, 2014-01, Vol.6, p.547947</ispartof><rights>2014 Yaohua Deng et al.</rights><rights>Copyright © 2014 Yaohua Deng et al. Yaohua Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a531t-ffd835b636b21515a7fe5c0cf8ce204256efcaa24db4c31788dbcf724c63b2dd3</citedby><cites>FETCH-LOGICAL-a531t-ffd835b636b21515a7fe5c0cf8ce204256efcaa24db4c31788dbcf724c63b2dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1155/2014/547947$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1155/2014/547947$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,21945,27830,27901,27902,44921,45309</link.rule.ids></links><search><creatorcontrib>Deng, Yaohua</creatorcontrib><creatorcontrib>Lu, Qiwen</creatorcontrib><creatorcontrib>Chen, Jiayuan</creatorcontrib><creatorcontrib>Chen, Sicheng</creatorcontrib><creatorcontrib>Wu, Liming</creatorcontrib><creatorcontrib>Tang, Luxin</creatorcontrib><title>Study on the Extraction Method of Deformation Influence Factors of Flexible Material Processing Based on Information Entropy</title><title>Advances in Mechanical Engineering</title><description>Through analyzing the flexible material processing (FMP) deformation factors, it is pointed out that without a choice of deformation influence quantity would increase the compensation control predict model system input. In order to reduce the count of spatial dimensions of knowledge, we proposed the method by taking the use of FMP deformation compensation control knowledge extraction, which is based on decision table (DT) attribute reduction, deriving the algorithm that is based on information entropy attribute importance, to find the dependencies between attributes through attribute significance (AS) and to extract the intrinsic attributes which is the most close to deformation compensation control decision making. Finally, through an example presented in this paper to verify the efficiency of RS control knowledge extraction method. Compared with the Pawlak method and genetic extraction algorithm, the prediction accuracy of after reduction data is 0.55% less than Pawlak method and 3.64% higher than the genetic extraction algorithm; however, the time consumption of forecast calculation is 30.3% and 11.53% less than Pawlak method and genetic extraction algorithm, respectively. Knowledge extraction entropy methods presented in this paper have the advantages of fast calculating speed and high accuracy and are suitable for FMP deformation compensation of online control.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Compensation</subject><subject>Decision making</subject><subject>Deformation</subject><subject>Neural networks</subject><subject>Roads &amp; highways</subject><issn>1687-8132</issn><issn>1687-8140</issn><issn>1687-8140</issn><issn>1687-8132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1LAzEQhhdRUNSTfyDgRZBqPnezRz9aLSgK6jlkk0m7sm5qkoIFf7xpV4oHT0mGZ54J8xbFCcEXhAhxSTHhl4JXNa92igNSymokCce72zuj-8VxjG2DBS4xLuv6oPh-SUu7Qr5HaQ5o_JWCNqnNz0dIc2-Rd-gWnA8felOd9q5bQm8ATTLnQ1wDkw6-2qYD9KgThFZ36Dl4A3lSP0PXOoJFQ-tWM-5T8IvVUbHndBfh-Pc8LN4m49eb-9HD09305uphpAUjaeSclUw0JSsbSgQRunIgDDZOGqCYU1GCM1pTbhtuGKmktI1xFeWmZA21lh0W08FrvX5Xi9B-6LBSXrdqU_BhpnRIrelANQ4ok7jOe2TZl3ckCfCaGmkEpoZm1-ngWgT_uYSY1Ltfhj5_XxGBqyr34TpT5wNlgo8xgNtOJVit01LrtNSQVqbPBjrqGfzx_YP-ABqnk7k</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Deng, Yaohua</creator><creator>Lu, Qiwen</creator><creator>Chen, Jiayuan</creator><creator>Chen, Sicheng</creator><creator>Wu, Liming</creator><creator>Tang, Luxin</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Study on the Extraction Method of Deformation Influence Factors of Flexible Material Processing Based on Information Entropy</title><author>Deng, Yaohua ; Lu, Qiwen ; Chen, Jiayuan ; Chen, Sicheng ; Wu, Liming ; Tang, Luxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a531t-ffd835b636b21515a7fe5c0cf8ce204256efcaa24db4c31788dbcf724c63b2dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Compensation</topic><topic>Decision making</topic><topic>Deformation</topic><topic>Neural networks</topic><topic>Roads &amp; highways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yaohua</creatorcontrib><creatorcontrib>Lu, Qiwen</creatorcontrib><creatorcontrib>Chen, Jiayuan</creatorcontrib><creatorcontrib>Chen, Sicheng</creatorcontrib><creatorcontrib>Wu, Liming</creatorcontrib><creatorcontrib>Tang, Luxin</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Yaohua</au><au>Lu, Qiwen</au><au>Chen, Jiayuan</au><au>Chen, Sicheng</au><au>Wu, Liming</au><au>Tang, Luxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Extraction Method of Deformation Influence Factors of Flexible Material Processing Based on Information Entropy</atitle><jtitle>Advances in Mechanical Engineering</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>6</volume><spage>547947</spage><pages>547947-</pages><issn>1687-8132</issn><issn>1687-8140</issn><eissn>1687-8140</eissn><eissn>1687-8132</eissn><abstract>Through analyzing the flexible material processing (FMP) deformation factors, it is pointed out that without a choice of deformation influence quantity would increase the compensation control predict model system input. In order to reduce the count of spatial dimensions of knowledge, we proposed the method by taking the use of FMP deformation compensation control knowledge extraction, which is based on decision table (DT) attribute reduction, deriving the algorithm that is based on information entropy attribute importance, to find the dependencies between attributes through attribute significance (AS) and to extract the intrinsic attributes which is the most close to deformation compensation control decision making. Finally, through an example presented in this paper to verify the efficiency of RS control knowledge extraction method. Compared with the Pawlak method and genetic extraction algorithm, the prediction accuracy of after reduction data is 0.55% less than Pawlak method and 3.64% higher than the genetic extraction algorithm; however, the time consumption of forecast calculation is 30.3% and 11.53% less than Pawlak method and genetic extraction algorithm, respectively. Knowledge extraction entropy methods presented in this paper have the advantages of fast calculating speed and high accuracy and are suitable for FMP deformation compensation of online control.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1155/2014/547947</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8132
ispartof Advances in Mechanical Engineering, 2014-01, Vol.6, p.547947
issn 1687-8132
1687-8140
1687-8140
1687-8132
language eng
recordid cdi_proquest_journals_1507747309
source DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Compensation
Decision making
Deformation
Neural networks
Roads & highways
title Study on the Extraction Method of Deformation Influence Factors of Flexible Material Processing Based on Information Entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Extraction%20Method%20of%20Deformation%20Influence%20Factors%20of%20Flexible%20Material%20Processing%20Based%20on%20Information%20Entropy&rft.jtitle=Advances%20in%20Mechanical%20Engineering&rft.au=Deng,%20Yaohua&rft.date=2014-01-01&rft.volume=6&rft.spage=547947&rft.pages=547947-&rft.issn=1687-8132&rft.eissn=1687-8140&rft_id=info:doi/10.1155/2014/547947&rft_dat=%3Cproquest_doaj_%3E3247619311%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507747309&rft_id=info:pmid/&rft_sage_id=10.1155_2014/547947&rft_doaj_id=oai_doaj_org_article_bfe2380954734db69981e492c8c502c2&rfr_iscdi=true