Comparing dynamic causal models

This article describes the use of Bayes factors for comparing dynamic causal models (DCMs). DCMs are used to make inferences about effective connectivity from functional magnetic resonance imaging (fMRI) data. These inferences, however, are contingent upon assumptions about model structure, that is,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2004-07, Vol.22 (3), p.1157-1172
Hauptverfasser: Penny, W.D., Stephan, K.E., Mechelli, A., Friston, K.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1172
container_issue 3
container_start_page 1157
container_title NeuroImage (Orlando, Fla.)
container_volume 22
creator Penny, W.D.
Stephan, K.E.
Mechelli, A.
Friston, K.J.
description This article describes the use of Bayes factors for comparing dynamic causal models (DCMs). DCMs are used to make inferences about effective connectivity from functional magnetic resonance imaging (fMRI) data. These inferences, however, are contingent upon assumptions about model structure, that is, the connectivity pattern between the regions included in the model. Given the current lack of detailed knowledge on anatomical connectivity in the human brain, there are often considerable degrees of freedom when defining the connectional structure of DCMs. In addition, many plausible scientific hypotheses may exist about which connections are changed by experimental manipulation, and a formal procedure for directly comparing these competing hypotheses is highly desirable. In this article, we show how Bayes factors can be used to guide choices about model structure, both concerning the intrinsic connectivity pattern and the contextual modulation of individual connections. The combined use of Bayes factors and DCM thus allows one to evaluate competing scientific theories about the architecture of large-scale neural networks and the neuronal interactions that mediate perception and cognition.
doi_str_mv 10.1016/j.neuroimage.2004.03.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1506611707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811904001648</els_id><sourcerecordid>3244235361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-7bc77a399edd771625c738ed6383e00f6a58f4315b296590ae707ec5688505c43</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwG4jEOWEdx68jVLykSlzgbLn2pnLUxMVOkPrvSVUkjpx2DjOzmo-QgkJFgYr7rhpwSjH0dotVDdBUwCqoxRlZUNC81FzW50fNWako1ZfkKucOADRt1ILcrmK_tykM28IfBtsHVzg7Zbsr-uhxl6_JRWt3GW9-75J8Pj99rF7L9fvL2-phXTrWNGMpN05Ky7RG76WkouZOMoVeMMUQoBWWq7ZhlG9qLbgGixIkOi6U4sBdw5bk7tS7T_FrwjyaLk5pmF8aykEISufA7FInl0sx54St2ad5eToYCuaIw3TmD4c54jDAzIxjjj6eovMo_A6YTHYBB4c-JHSj8TH8X_IDAHdrkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506611707</pqid></control><display><type>article</type><title>Comparing dynamic causal models</title><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Penny, W.D. ; Stephan, K.E. ; Mechelli, A. ; Friston, K.J.</creator><creatorcontrib>Penny, W.D. ; Stephan, K.E. ; Mechelli, A. ; Friston, K.J.</creatorcontrib><description>This article describes the use of Bayes factors for comparing dynamic causal models (DCMs). DCMs are used to make inferences about effective connectivity from functional magnetic resonance imaging (fMRI) data. These inferences, however, are contingent upon assumptions about model structure, that is, the connectivity pattern between the regions included in the model. Given the current lack of detailed knowledge on anatomical connectivity in the human brain, there are often considerable degrees of freedom when defining the connectional structure of DCMs. In addition, many plausible scientific hypotheses may exist about which connections are changed by experimental manipulation, and a formal procedure for directly comparing these competing hypotheses is highly desirable. In this article, we show how Bayes factors can be used to guide choices about model structure, both concerning the intrinsic connectivity pattern and the contextual modulation of individual connections. The combined use of Bayes factors and DCM thus allows one to evaluate competing scientific theories about the architecture of large-scale neural networks and the neuronal interactions that mediate perception and cognition.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2004.03.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Bayes factors ; Bayesian analysis ; Brain ; Dynamic causal models ; fMRI ; Hypotheses ; Parameter estimation</subject><ispartof>NeuroImage (Orlando, Fla.), 2004-07, Vol.22 (3), p.1157-1172</ispartof><rights>2004 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jul 1, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-7bc77a399edd771625c738ed6383e00f6a58f4315b296590ae707ec5688505c43</citedby><cites>FETCH-LOGICAL-c344t-7bc77a399edd771625c738ed6383e00f6a58f4315b296590ae707ec5688505c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506611707?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Penny, W.D.</creatorcontrib><creatorcontrib>Stephan, K.E.</creatorcontrib><creatorcontrib>Mechelli, A.</creatorcontrib><creatorcontrib>Friston, K.J.</creatorcontrib><title>Comparing dynamic causal models</title><title>NeuroImage (Orlando, Fla.)</title><description>This article describes the use of Bayes factors for comparing dynamic causal models (DCMs). DCMs are used to make inferences about effective connectivity from functional magnetic resonance imaging (fMRI) data. These inferences, however, are contingent upon assumptions about model structure, that is, the connectivity pattern between the regions included in the model. Given the current lack of detailed knowledge on anatomical connectivity in the human brain, there are often considerable degrees of freedom when defining the connectional structure of DCMs. In addition, many plausible scientific hypotheses may exist about which connections are changed by experimental manipulation, and a formal procedure for directly comparing these competing hypotheses is highly desirable. In this article, we show how Bayes factors can be used to guide choices about model structure, both concerning the intrinsic connectivity pattern and the contextual modulation of individual connections. The combined use of Bayes factors and DCM thus allows one to evaluate competing scientific theories about the architecture of large-scale neural networks and the neuronal interactions that mediate perception and cognition.</description><subject>Bayes factors</subject><subject>Bayesian analysis</subject><subject>Brain</subject><subject>Dynamic causal models</subject><subject>fMRI</subject><subject>Hypotheses</subject><subject>Parameter estimation</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkEtPwzAQhC0EEqXwG4jEOWEdx68jVLykSlzgbLn2pnLUxMVOkPrvSVUkjpx2DjOzmo-QgkJFgYr7rhpwSjH0dotVDdBUwCqoxRlZUNC81FzW50fNWako1ZfkKucOADRt1ILcrmK_tykM28IfBtsHVzg7Zbsr-uhxl6_JRWt3GW9-75J8Pj99rF7L9fvL2-phXTrWNGMpN05Ky7RG76WkouZOMoVeMMUQoBWWq7ZhlG9qLbgGixIkOi6U4sBdw5bk7tS7T_FrwjyaLk5pmF8aykEISufA7FInl0sx54St2ad5eToYCuaIw3TmD4c54jDAzIxjjj6eovMo_A6YTHYBB4c-JHSj8TH8X_IDAHdrkw</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Penny, W.D.</creator><creator>Stephan, K.E.</creator><creator>Mechelli, A.</creator><creator>Friston, K.J.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20040701</creationdate><title>Comparing dynamic causal models</title><author>Penny, W.D. ; Stephan, K.E. ; Mechelli, A. ; Friston, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-7bc77a399edd771625c738ed6383e00f6a58f4315b296590ae707ec5688505c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bayes factors</topic><topic>Bayesian analysis</topic><topic>Brain</topic><topic>Dynamic causal models</topic><topic>fMRI</topic><topic>Hypotheses</topic><topic>Parameter estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penny, W.D.</creatorcontrib><creatorcontrib>Stephan, K.E.</creatorcontrib><creatorcontrib>Mechelli, A.</creatorcontrib><creatorcontrib>Friston, K.J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penny, W.D.</au><au>Stephan, K.E.</au><au>Mechelli, A.</au><au>Friston, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing dynamic causal models</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>22</volume><issue>3</issue><spage>1157</spage><epage>1172</epage><pages>1157-1172</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>This article describes the use of Bayes factors for comparing dynamic causal models (DCMs). DCMs are used to make inferences about effective connectivity from functional magnetic resonance imaging (fMRI) data. These inferences, however, are contingent upon assumptions about model structure, that is, the connectivity pattern between the regions included in the model. Given the current lack of detailed knowledge on anatomical connectivity in the human brain, there are often considerable degrees of freedom when defining the connectional structure of DCMs. In addition, many plausible scientific hypotheses may exist about which connections are changed by experimental manipulation, and a formal procedure for directly comparing these competing hypotheses is highly desirable. In this article, we show how Bayes factors can be used to guide choices about model structure, both concerning the intrinsic connectivity pattern and the contextual modulation of individual connections. The combined use of Bayes factors and DCM thus allows one to evaluate competing scientific theories about the architecture of large-scale neural networks and the neuronal interactions that mediate perception and cognition.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.neuroimage.2004.03.026</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2004-07, Vol.22 (3), p.1157-1172
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_journals_1506611707
source Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Bayes factors
Bayesian analysis
Brain
Dynamic causal models
fMRI
Hypotheses
Parameter estimation
title Comparing dynamic causal models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20dynamic%20causal%20models&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Penny,%20W.D.&rft.date=2004-07-01&rft.volume=22&rft.issue=3&rft.spage=1157&rft.epage=1172&rft.pages=1157-1172&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2004.03.026&rft_dat=%3Cproquest_cross%3E3244235361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506611707&rft_id=info:pmid/&rft_els_id=S1053811904001648&rfr_iscdi=true