Genetic variation of Aflatoxin B1 aldehyde reductase genes ( AFAR ) in human tumour cells

Abstract AFAR genes play a key role in the detoxification of the carcinogen Aflatoxin B1 (AFB1 ). In the rat, Afar1 induction can prevent AFB1 -induced liver cancer. It has been proposed that AFAR enzymes can metabolise endogenous diketones and dialdehydes that may be cytotoxic and/or genotoxic. Fur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer letters 2008-12, Vol.272 (1), p.160-166
Hauptverfasser: Praml, Christian, Schulz, Wolfgang, Claas, Andreas, Mollenhauer, Jan, Poustka, Annemarie, Ackermann, Rolf, Schwab, Manfred, Henrich, Kai-Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 1
container_start_page 160
container_title Cancer letters
container_volume 272
creator Praml, Christian
Schulz, Wolfgang
Claas, Andreas
Mollenhauer, Jan
Poustka, Annemarie
Ackermann, Rolf
Schwab, Manfred
Henrich, Kai-Oliver
description Abstract AFAR genes play a key role in the detoxification of the carcinogen Aflatoxin B1 (AFB1 ). In the rat, Afar1 induction can prevent AFB1 -induced liver cancer. It has been proposed that AFAR enzymes can metabolise endogenous diketones and dialdehydes that may be cytotoxic and/or genotoxic. Furthermore, human AFAR1 catalyses the rate limiting step in the synthesis of the neuromodulator γ-hydroxybutyrate (GHB) and was found elevated in neurodegenerative diseases such as Alzheimer’s and dementia with Lewy bodies (DLB). The human AFAR gene family maps to a genomic region in 1p36 of frequent hemizygous deletions in various human cancers. To investigate, if genetic variation of AFAR1 and AFAR2 exists that may alter protein detoxification capabilities and confer susceptibility to cancer, we have analysed a spectrum of human tumours and tumour cell lines for genetic heterogeneity. From 110 DNA samples, we identified nine different amino acid changes; two were in AFAR1 and seven in AFAR2 . In AFAR1 , we found genetic variation in the proposed substrate-binding amino acid 113, encoding Ala113 or Thr113 . An AFAR2 variant had a Glu55 substituted by Lys55 at a position that is conserved among many aldo-keto reductases. This polarity change may have an effect on the proposed substrate binding amino acids nearby (Met47 , Tyr48 , Asp50 ). Further population analyses and functional studies of the nine variants detected may show if these variants are disease-related.
doi_str_mv 10.1016/j.canlet.2008.07.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1505478766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304383508005363</els_id><sourcerecordid>3242089711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-941bcf7d2fac53b4a6a8a4a82e01aa4652a7a55ad1707c7795321b617c9fdfac3</originalsourceid><addsrcrecordid>eNqFkU-LFDEUxIMo7rj6DUQCXvTQ7Uun08lchHFxV2FB8M_BU3iTvHYz9nTvJunF-fammYEFL55y-VW9VBVjLwXUAkT3blc7HAfKdQNgatA1CPmIrYTRTaXXBh6zFUhoK2mkOmPPUtoBgGq1esrOCqQaY7oV-3lFI-Xg-D3GgDlMI596vukHzNOfMPIPguPg6ebgiUfys8uYiP8qosTf8M3l5it_ywt3M-9x5HneT3PkjoYhPWdPehwSvTi95-zH5cfvF5-q6y9Xny8215WTyuRq3Yqt67VvenRKblvs0GCLpiEQiG2nGtSoFHqhQTut10o2YtsJ7da9Lxp5zl4ffW_jdDdTynZX_jCWk1aoJbDRXVeo9ki5OKUUqbe3MewxHqwAu_Rpd_bYp136tKBt6bPIXp3M5-2e_IPoVGAB3h8BKhHvA0WbXKDRkQ-RXLZ-Cv-78K-BG8IYHA6_6UDpIYtNjQX7bdl0mRRMWVN2Uv4FEsWb1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505478766</pqid></control><display><type>article</type><title>Genetic variation of Aflatoxin B1 aldehyde reductase genes ( AFAR ) in human tumour cells</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Praml, Christian ; Schulz, Wolfgang ; Claas, Andreas ; Mollenhauer, Jan ; Poustka, Annemarie ; Ackermann, Rolf ; Schwab, Manfred ; Henrich, Kai-Oliver</creator><creatorcontrib>Praml, Christian ; Schulz, Wolfgang ; Claas, Andreas ; Mollenhauer, Jan ; Poustka, Annemarie ; Ackermann, Rolf ; Schwab, Manfred ; Henrich, Kai-Oliver</creatorcontrib><description>Abstract AFAR genes play a key role in the detoxification of the carcinogen Aflatoxin B1 (AFB1 ). In the rat, Afar1 induction can prevent AFB1 -induced liver cancer. It has been proposed that AFAR enzymes can metabolise endogenous diketones and dialdehydes that may be cytotoxic and/or genotoxic. Furthermore, human AFAR1 catalyses the rate limiting step in the synthesis of the neuromodulator γ-hydroxybutyrate (GHB) and was found elevated in neurodegenerative diseases such as Alzheimer’s and dementia with Lewy bodies (DLB). The human AFAR gene family maps to a genomic region in 1p36 of frequent hemizygous deletions in various human cancers. To investigate, if genetic variation of AFAR1 and AFAR2 exists that may alter protein detoxification capabilities and confer susceptibility to cancer, we have analysed a spectrum of human tumours and tumour cell lines for genetic heterogeneity. From 110 DNA samples, we identified nine different amino acid changes; two were in AFAR1 and seven in AFAR2 . In AFAR1 , we found genetic variation in the proposed substrate-binding amino acid 113, encoding Ala113 or Thr113 . An AFAR2 variant had a Glu55 substituted by Lys55 at a position that is conserved among many aldo-keto reductases. This polarity change may have an effect on the proposed substrate binding amino acids nearby (Met47 , Tyr48 , Asp50 ). Further population analyses and functional studies of the nine variants detected may show if these variants are disease-related.</description><identifier>ISSN: 0304-3835</identifier><identifier>EISSN: 1872-7980</identifier><identifier>DOI: 10.1016/j.canlet.2008.07.013</identifier><identifier>PMID: 18752886</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>AFAR ; Aflatoxin B1 - toxicity ; Aflatoxin B1 aldehyde reductase ; AKR7 ; Aldehyde Reductase - genetics ; Amino Acid Substitution ; Animals ; Cancer ; Carcinogens - toxicity ; Cell Line, Tumor ; Chromosome Mapping ; Chromosomes, Human, Pair 1 ; Colorectal cancer ; Colorectal Neoplasms - enzymology ; Colorectal Neoplasms - genetics ; Crystal structure ; Deoxyribonucleic acid ; Detoxication ; DNA ; DNA - genetics ; DNA - isolation &amp; purification ; DNA Primers ; DNA, Neoplasm - genetics ; DNA, Neoplasm - isolation &amp; purification ; Enzymes ; Genes ; Genetic Variation ; Hematology, Oncology and Palliative Medicine ; Humans ; Multigene Family ; Neoplasms - enzymology ; Neoplasms - genetics ; Polymorphism, Genetic ; Polymorphism, Single-Stranded Conformational ; Proteins ; Rats ; Studies ; Tumors</subject><ispartof>Cancer letters, 2008-12, Vol.272 (1), p.160-166</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2008 Elsevier Ireland Ltd</rights><rights>Copyright Elsevier Limited Dec 8, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-941bcf7d2fac53b4a6a8a4a82e01aa4652a7a55ad1707c7795321b617c9fdfac3</citedby><cites>FETCH-LOGICAL-c358t-941bcf7d2fac53b4a6a8a4a82e01aa4652a7a55ad1707c7795321b617c9fdfac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.canlet.2008.07.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18752886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Praml, Christian</creatorcontrib><creatorcontrib>Schulz, Wolfgang</creatorcontrib><creatorcontrib>Claas, Andreas</creatorcontrib><creatorcontrib>Mollenhauer, Jan</creatorcontrib><creatorcontrib>Poustka, Annemarie</creatorcontrib><creatorcontrib>Ackermann, Rolf</creatorcontrib><creatorcontrib>Schwab, Manfred</creatorcontrib><creatorcontrib>Henrich, Kai-Oliver</creatorcontrib><title>Genetic variation of Aflatoxin B1 aldehyde reductase genes ( AFAR ) in human tumour cells</title><title>Cancer letters</title><addtitle>Cancer Lett</addtitle><description>Abstract AFAR genes play a key role in the detoxification of the carcinogen Aflatoxin B1 (AFB1 ). In the rat, Afar1 induction can prevent AFB1 -induced liver cancer. It has been proposed that AFAR enzymes can metabolise endogenous diketones and dialdehydes that may be cytotoxic and/or genotoxic. Furthermore, human AFAR1 catalyses the rate limiting step in the synthesis of the neuromodulator γ-hydroxybutyrate (GHB) and was found elevated in neurodegenerative diseases such as Alzheimer’s and dementia with Lewy bodies (DLB). The human AFAR gene family maps to a genomic region in 1p36 of frequent hemizygous deletions in various human cancers. To investigate, if genetic variation of AFAR1 and AFAR2 exists that may alter protein detoxification capabilities and confer susceptibility to cancer, we have analysed a spectrum of human tumours and tumour cell lines for genetic heterogeneity. From 110 DNA samples, we identified nine different amino acid changes; two were in AFAR1 and seven in AFAR2 . In AFAR1 , we found genetic variation in the proposed substrate-binding amino acid 113, encoding Ala113 or Thr113 . An AFAR2 variant had a Glu55 substituted by Lys55 at a position that is conserved among many aldo-keto reductases. This polarity change may have an effect on the proposed substrate binding amino acids nearby (Met47 , Tyr48 , Asp50 ). Further population analyses and functional studies of the nine variants detected may show if these variants are disease-related.</description><subject>AFAR</subject><subject>Aflatoxin B1 - toxicity</subject><subject>Aflatoxin B1 aldehyde reductase</subject><subject>AKR7</subject><subject>Aldehyde Reductase - genetics</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Cancer</subject><subject>Carcinogens - toxicity</subject><subject>Cell Line, Tumor</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Human, Pair 1</subject><subject>Colorectal cancer</subject><subject>Colorectal Neoplasms - enzymology</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Crystal structure</subject><subject>Deoxyribonucleic acid</subject><subject>Detoxication</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - isolation &amp; purification</subject><subject>DNA Primers</subject><subject>DNA, Neoplasm - genetics</subject><subject>DNA, Neoplasm - isolation &amp; purification</subject><subject>Enzymes</subject><subject>Genes</subject><subject>Genetic Variation</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Multigene Family</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - genetics</subject><subject>Polymorphism, Genetic</subject><subject>Polymorphism, Single-Stranded Conformational</subject><subject>Proteins</subject><subject>Rats</subject><subject>Studies</subject><subject>Tumors</subject><issn>0304-3835</issn><issn>1872-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU-LFDEUxIMo7rj6DUQCXvTQ7Uun08lchHFxV2FB8M_BU3iTvHYz9nTvJunF-fammYEFL55y-VW9VBVjLwXUAkT3blc7HAfKdQNgatA1CPmIrYTRTaXXBh6zFUhoK2mkOmPPUtoBgGq1esrOCqQaY7oV-3lFI-Xg-D3GgDlMI596vukHzNOfMPIPguPg6ebgiUfys8uYiP8qosTf8M3l5it_ywt3M-9x5HneT3PkjoYhPWdPehwSvTi95-zH5cfvF5-q6y9Xny8215WTyuRq3Yqt67VvenRKblvs0GCLpiEQiG2nGtSoFHqhQTut10o2YtsJ7da9Lxp5zl4ffW_jdDdTynZX_jCWk1aoJbDRXVeo9ki5OKUUqbe3MewxHqwAu_Rpd_bYp136tKBt6bPIXp3M5-2e_IPoVGAB3h8BKhHvA0WbXKDRkQ-RXLZ-Cv-78K-BG8IYHA6_6UDpIYtNjQX7bdl0mRRMWVN2Uv4FEsWb1g</recordid><startdate>20081208</startdate><enddate>20081208</enddate><creator>Praml, Christian</creator><creator>Schulz, Wolfgang</creator><creator>Claas, Andreas</creator><creator>Mollenhauer, Jan</creator><creator>Poustka, Annemarie</creator><creator>Ackermann, Rolf</creator><creator>Schwab, Manfred</creator><creator>Henrich, Kai-Oliver</creator><general>Elsevier Ireland Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope></search><sort><creationdate>20081208</creationdate><title>Genetic variation of Aflatoxin B1 aldehyde reductase genes ( AFAR ) in human tumour cells</title><author>Praml, Christian ; Schulz, Wolfgang ; Claas, Andreas ; Mollenhauer, Jan ; Poustka, Annemarie ; Ackermann, Rolf ; Schwab, Manfred ; Henrich, Kai-Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-941bcf7d2fac53b4a6a8a4a82e01aa4652a7a55ad1707c7795321b617c9fdfac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>AFAR</topic><topic>Aflatoxin B1 - toxicity</topic><topic>Aflatoxin B1 aldehyde reductase</topic><topic>AKR7</topic><topic>Aldehyde Reductase - genetics</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Cancer</topic><topic>Carcinogens - toxicity</topic><topic>Cell Line, Tumor</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Human, Pair 1</topic><topic>Colorectal cancer</topic><topic>Colorectal Neoplasms - enzymology</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Crystal structure</topic><topic>Deoxyribonucleic acid</topic><topic>Detoxication</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - isolation &amp; purification</topic><topic>DNA Primers</topic><topic>DNA, Neoplasm - genetics</topic><topic>DNA, Neoplasm - isolation &amp; purification</topic><topic>Enzymes</topic><topic>Genes</topic><topic>Genetic Variation</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Multigene Family</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - genetics</topic><topic>Polymorphism, Genetic</topic><topic>Polymorphism, Single-Stranded Conformational</topic><topic>Proteins</topic><topic>Rats</topic><topic>Studies</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Praml, Christian</creatorcontrib><creatorcontrib>Schulz, Wolfgang</creatorcontrib><creatorcontrib>Claas, Andreas</creatorcontrib><creatorcontrib>Mollenhauer, Jan</creatorcontrib><creatorcontrib>Poustka, Annemarie</creatorcontrib><creatorcontrib>Ackermann, Rolf</creatorcontrib><creatorcontrib>Schwab, Manfred</creatorcontrib><creatorcontrib>Henrich, Kai-Oliver</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Cancer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Praml, Christian</au><au>Schulz, Wolfgang</au><au>Claas, Andreas</au><au>Mollenhauer, Jan</au><au>Poustka, Annemarie</au><au>Ackermann, Rolf</au><au>Schwab, Manfred</au><au>Henrich, Kai-Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic variation of Aflatoxin B1 aldehyde reductase genes ( AFAR ) in human tumour cells</atitle><jtitle>Cancer letters</jtitle><addtitle>Cancer Lett</addtitle><date>2008-12-08</date><risdate>2008</risdate><volume>272</volume><issue>1</issue><spage>160</spage><epage>166</epage><pages>160-166</pages><issn>0304-3835</issn><eissn>1872-7980</eissn><abstract>Abstract AFAR genes play a key role in the detoxification of the carcinogen Aflatoxin B1 (AFB1 ). In the rat, Afar1 induction can prevent AFB1 -induced liver cancer. It has been proposed that AFAR enzymes can metabolise endogenous diketones and dialdehydes that may be cytotoxic and/or genotoxic. Furthermore, human AFAR1 catalyses the rate limiting step in the synthesis of the neuromodulator γ-hydroxybutyrate (GHB) and was found elevated in neurodegenerative diseases such as Alzheimer’s and dementia with Lewy bodies (DLB). The human AFAR gene family maps to a genomic region in 1p36 of frequent hemizygous deletions in various human cancers. To investigate, if genetic variation of AFAR1 and AFAR2 exists that may alter protein detoxification capabilities and confer susceptibility to cancer, we have analysed a spectrum of human tumours and tumour cell lines for genetic heterogeneity. From 110 DNA samples, we identified nine different amino acid changes; two were in AFAR1 and seven in AFAR2 . In AFAR1 , we found genetic variation in the proposed substrate-binding amino acid 113, encoding Ala113 or Thr113 . An AFAR2 variant had a Glu55 substituted by Lys55 at a position that is conserved among many aldo-keto reductases. This polarity change may have an effect on the proposed substrate binding amino acids nearby (Met47 , Tyr48 , Asp50 ). Further population analyses and functional studies of the nine variants detected may show if these variants are disease-related.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>18752886</pmid><doi>10.1016/j.canlet.2008.07.013</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3835
ispartof Cancer letters, 2008-12, Vol.272 (1), p.160-166
issn 0304-3835
1872-7980
language eng
recordid cdi_proquest_journals_1505478766
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects AFAR
Aflatoxin B1 - toxicity
Aflatoxin B1 aldehyde reductase
AKR7
Aldehyde Reductase - genetics
Amino Acid Substitution
Animals
Cancer
Carcinogens - toxicity
Cell Line, Tumor
Chromosome Mapping
Chromosomes, Human, Pair 1
Colorectal cancer
Colorectal Neoplasms - enzymology
Colorectal Neoplasms - genetics
Crystal structure
Deoxyribonucleic acid
Detoxication
DNA
DNA - genetics
DNA - isolation & purification
DNA Primers
DNA, Neoplasm - genetics
DNA, Neoplasm - isolation & purification
Enzymes
Genes
Genetic Variation
Hematology, Oncology and Palliative Medicine
Humans
Multigene Family
Neoplasms - enzymology
Neoplasms - genetics
Polymorphism, Genetic
Polymorphism, Single-Stranded Conformational
Proteins
Rats
Studies
Tumors
title Genetic variation of Aflatoxin B1 aldehyde reductase genes ( AFAR ) in human tumour cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20variation%20of%20Aflatoxin%20B1%20aldehyde%20reductase%20genes%20(%20AFAR%20)%20in%20human%20tumour%20cells&rft.jtitle=Cancer%20letters&rft.au=Praml,%20Christian&rft.date=2008-12-08&rft.volume=272&rft.issue=1&rft.spage=160&rft.epage=166&rft.pages=160-166&rft.issn=0304-3835&rft.eissn=1872-7980&rft_id=info:doi/10.1016/j.canlet.2008.07.013&rft_dat=%3Cproquest_cross%3E3242089711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505478766&rft_id=info:pmid/18752886&rft_els_id=S0304383508005363&rfr_iscdi=true