Spatially Adaptive Kernel Regression Using Risk Estimation

An important question in kernel regression is one of estimating the order and bandwidth parameters from available noisy data. We propose to solve the problem within a risk estimation framework. Considering an independent and identically distributed (i.i.d.) Gaussian observations model, we use Stein&...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2014-04, Vol.21 (4), p.445-448
Hauptverfasser: Krishnan, Sunder Ram, Seelamantula, Chandra Sekhar, Chakravarti, Purvasha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue 4
container_start_page 445
container_title IEEE signal processing letters
container_volume 21
creator Krishnan, Sunder Ram
Seelamantula, Chandra Sekhar
Chakravarti, Purvasha
description An important question in kernel regression is one of estimating the order and bandwidth parameters from available noisy data. We propose to solve the problem within a risk estimation framework. Considering an independent and identically distributed (i.i.d.) Gaussian observations model, we use Stein's unbiased risk estimator (SURE) to estimate a weighted mean-square error (MSE) risk, and optimize it with respect to the order and bandwidth parameters. The two parameters are thus spatially adapted in such a manner that noise smoothing and fine structure preservation are simultaneously achieved. On the application side, we consider the problem of image restoration from uniform/non-uniform data, and show that the SURE approach to spatially adaptive kernel regression results in better quality estimation compared with its spatially non-adaptive counterparts. The denoising results obtained are comparable to those obtained using other state-of-the-art techniques, and in some scenarios, superior.
doi_str_mv 10.1109/LSP.2014.2305176
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1505451687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6734684</ieee_id><sourcerecordid>1520954754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-97322d4be7eb21033a482409e894afbf8272f4dbd12aa0587eaa9b9f59e136863</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-ps1_ZXW9F6gcWlNaew6aZlK1pEndTof_eLS0ePM0cnvdl5iHkmsKIUjD30_nHiAEVI8ZBUpWdkAGVUqeMZ_Q07qAgNQb0ObkIYQ0Ammo5IA_zzvbO1vUuGZe2690PJm_oG6yTGa48huDaJlkE16ySmQtfyST0bhMjbXNJzipbB7w6ziFZPE0-H1_S6fvz6-N4mi45E31qFGesFAUqLBgFzq3QTIBBbYStikozxSpRFiVl1oLUCq01hamkQcoznfEhuTv0dr793mLo840LS6xr22C7DTmVDIwUSoqI3v5D1-3WN_G6SIEUkmZaRQoO1NK3IXis8s7Hn_wup5DvZeZRZr6XmR9lxsjNIeIQ8Q_PFBeZFvwXxuduYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505451687</pqid></control><display><type>article</type><title>Spatially Adaptive Kernel Regression Using Risk Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Krishnan, Sunder Ram ; Seelamantula, Chandra Sekhar ; Chakravarti, Purvasha</creator><creatorcontrib>Krishnan, Sunder Ram ; Seelamantula, Chandra Sekhar ; Chakravarti, Purvasha</creatorcontrib><description>An important question in kernel regression is one of estimating the order and bandwidth parameters from available noisy data. We propose to solve the problem within a risk estimation framework. Considering an independent and identically distributed (i.i.d.) Gaussian observations model, we use Stein's unbiased risk estimator (SURE) to estimate a weighted mean-square error (MSE) risk, and optimize it with respect to the order and bandwidth parameters. The two parameters are thus spatially adapted in such a manner that noise smoothing and fine structure preservation are simultaneously achieved. On the application side, we consider the problem of image restoration from uniform/non-uniform data, and show that the SURE approach to spatially adaptive kernel regression results in better quality estimation compared with its spatially non-adaptive counterparts. The denoising results obtained are comparable to those obtained using other state-of-the-art techniques, and in some scenarios, superior.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2014.2305176</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Cost function ; Denoising ; Estimating ; Estimation ; Fine structure ; Kernel ; Kernels ; Mathematical models ; Noise measurement ; Noise reduction ; nonparametric regression ; Regression ; Risk ; Signal processing algorithms ; Smoothing methods ; spatially adaptive kernel regression ; Stein's unbiased risk estimator (SURE)</subject><ispartof>IEEE signal processing letters, 2014-04, Vol.21 (4), p.445-448</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-97322d4be7eb21033a482409e894afbf8272f4dbd12aa0587eaa9b9f59e136863</citedby><cites>FETCH-LOGICAL-c324t-97322d4be7eb21033a482409e894afbf8272f4dbd12aa0587eaa9b9f59e136863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6734684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6734684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krishnan, Sunder Ram</creatorcontrib><creatorcontrib>Seelamantula, Chandra Sekhar</creatorcontrib><creatorcontrib>Chakravarti, Purvasha</creatorcontrib><title>Spatially Adaptive Kernel Regression Using Risk Estimation</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>An important question in kernel regression is one of estimating the order and bandwidth parameters from available noisy data. We propose to solve the problem within a risk estimation framework. Considering an independent and identically distributed (i.i.d.) Gaussian observations model, we use Stein's unbiased risk estimator (SURE) to estimate a weighted mean-square error (MSE) risk, and optimize it with respect to the order and bandwidth parameters. The two parameters are thus spatially adapted in such a manner that noise smoothing and fine structure preservation are simultaneously achieved. On the application side, we consider the problem of image restoration from uniform/non-uniform data, and show that the SURE approach to spatially adaptive kernel regression results in better quality estimation compared with its spatially non-adaptive counterparts. The denoising results obtained are comparable to those obtained using other state-of-the-art techniques, and in some scenarios, superior.</description><subject>Bandwidth</subject><subject>Cost function</subject><subject>Denoising</subject><subject>Estimating</subject><subject>Estimation</subject><subject>Fine structure</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Mathematical models</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>nonparametric regression</subject><subject>Regression</subject><subject>Risk</subject><subject>Signal processing algorithms</subject><subject>Smoothing methods</subject><subject>spatially adaptive kernel regression</subject><subject>Stein's unbiased risk estimator (SURE)</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-ps1_ZXW9F6gcWlNaew6aZlK1pEndTof_eLS0ePM0cnvdl5iHkmsKIUjD30_nHiAEVI8ZBUpWdkAGVUqeMZ_Q07qAgNQb0ObkIYQ0Ammo5IA_zzvbO1vUuGZe2690PJm_oG6yTGa48huDaJlkE16ySmQtfyST0bhMjbXNJzipbB7w6ziFZPE0-H1_S6fvz6-N4mi45E31qFGesFAUqLBgFzq3QTIBBbYStikozxSpRFiVl1oLUCq01hamkQcoznfEhuTv0dr793mLo840LS6xr22C7DTmVDIwUSoqI3v5D1-3WN_G6SIEUkmZaRQoO1NK3IXis8s7Hn_wup5DvZeZRZr6XmR9lxsjNIeIQ8Q_PFBeZFvwXxuduYA</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Krishnan, Sunder Ram</creator><creator>Seelamantula, Chandra Sekhar</creator><creator>Chakravarti, Purvasha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201404</creationdate><title>Spatially Adaptive Kernel Regression Using Risk Estimation</title><author>Krishnan, Sunder Ram ; Seelamantula, Chandra Sekhar ; Chakravarti, Purvasha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-97322d4be7eb21033a482409e894afbf8272f4dbd12aa0587eaa9b9f59e136863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bandwidth</topic><topic>Cost function</topic><topic>Denoising</topic><topic>Estimating</topic><topic>Estimation</topic><topic>Fine structure</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Mathematical models</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>nonparametric regression</topic><topic>Regression</topic><topic>Risk</topic><topic>Signal processing algorithms</topic><topic>Smoothing methods</topic><topic>spatially adaptive kernel regression</topic><topic>Stein's unbiased risk estimator (SURE)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Sunder Ram</creatorcontrib><creatorcontrib>Seelamantula, Chandra Sekhar</creatorcontrib><creatorcontrib>Chakravarti, Purvasha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnan, Sunder Ram</au><au>Seelamantula, Chandra Sekhar</au><au>Chakravarti, Purvasha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Adaptive Kernel Regression Using Risk Estimation</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2014-04</date><risdate>2014</risdate><volume>21</volume><issue>4</issue><spage>445</spage><epage>448</epage><pages>445-448</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>An important question in kernel regression is one of estimating the order and bandwidth parameters from available noisy data. We propose to solve the problem within a risk estimation framework. Considering an independent and identically distributed (i.i.d.) Gaussian observations model, we use Stein's unbiased risk estimator (SURE) to estimate a weighted mean-square error (MSE) risk, and optimize it with respect to the order and bandwidth parameters. The two parameters are thus spatially adapted in such a manner that noise smoothing and fine structure preservation are simultaneously achieved. On the application side, we consider the problem of image restoration from uniform/non-uniform data, and show that the SURE approach to spatially adaptive kernel regression results in better quality estimation compared with its spatially non-adaptive counterparts. The denoising results obtained are comparable to those obtained using other state-of-the-art techniques, and in some scenarios, superior.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2014.2305176</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2014-04, Vol.21 (4), p.445-448
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_1505451687
source IEEE Electronic Library (IEL)
subjects Bandwidth
Cost function
Denoising
Estimating
Estimation
Fine structure
Kernel
Kernels
Mathematical models
Noise measurement
Noise reduction
nonparametric regression
Regression
Risk
Signal processing algorithms
Smoothing methods
spatially adaptive kernel regression
Stein's unbiased risk estimator (SURE)
title Spatially Adaptive Kernel Regression Using Risk Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Adaptive%20Kernel%20Regression%20Using%20Risk%20Estimation&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Krishnan,%20Sunder%20Ram&rft.date=2014-04&rft.volume=21&rft.issue=4&rft.spage=445&rft.epage=448&rft.pages=445-448&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2014.2305176&rft_dat=%3Cproquest_RIE%3E1520954754%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505451687&rft_id=info:pmid/&rft_ieee_id=6734684&rfr_iscdi=true