Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead seabream (Sparus aurata): illustration by a case study on mass spawning

In the absence of breeding strategy, natural spawning constitutes the breeding ground for fish farmers to empirically manage their commercial broodstock. In this context, we used six microsatellite markers to characterize the genetic pattern of six commercial seabream broodfish tanks having a common...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquaculture research 2014-03, Vol.45 (4), p.577-590
Hauptverfasser: Chavanne, Hervé, Parati, Katia, Cambuli, Caterina, Capoferri, Rossana, Jiménez, Cristóbal Aguilera, Galli, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590
container_issue 4
container_start_page 577
container_title Aquaculture research
container_volume 45
creator Chavanne, Hervé
Parati, Katia
Cambuli, Caterina
Capoferri, Rossana
Jiménez, Cristóbal Aguilera
Galli, Andrea
description In the absence of breeding strategy, natural spawning constitutes the breeding ground for fish farmers to empirically manage their commercial broodstock. In this context, we used six microsatellite markers to characterize the genetic pattern of six commercial seabream broodfish tanks having a common history spanning four generations. The progeny of one tank single‐day mass‐spawning event, reared in two different environments, was used to estimate the genetic parameters for body weight. Limited genetic differentiation was observed among broodfish groups. A panel of nine loci allowed us to unambiguously assign 95.4% of the offspring (1692) and identify 37 parents (65% of the total broodfish). The limited effective population size (Ne = 15.3) was due to the elevated variance of parental contributions and to broodfish failing to contribute to the progeny. The fluctuation of the allele frequency highlighted the risks of genetic drift and reduction in the heterozygosity in the next generations. Heritability for body weight was moderate at commercial size (0.40 ± 0.10) and the high genetic correlation at later stages laid the groundwork for precocious selection criteria for growth. The discussion opens on the opportunity to use mass spawning for selective breeding.
doi_str_mv 10.1111/are.12013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1505235119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3241021381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3703-5d0ae5975a5ec968b7aea62892778e462d95baf84e9d35f6990a52fbbed090a33</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhqMKpJbCof9gJC7tIa0dr5N1b6Xql7p8CKhacbEm8aS4ZJPU41D27_BL8bLAjbl4xvO8Y3neLNuT4lCmOMJAh7IQUm1lO1KVOi-kMM_Wuda51tXddvaC-UEIORNK7mQ_3_omDIyRus5HYlhi-EaBIQ7gaPRNhPiVINAYBjc10X8nwN7BPfUUfQMjxkihZxhaaDEsKbV8lyTogAnrQLiE_U8jhokBp4ARD47Bd93EMRV-6KFeAUKDTMBxcitIV0tkBh7xqff9_cvseYsd06s_5252c372-fQyX7y_uDo9WeSNqoTKtRNI2lQaNTWmnNcVEpbF3BRVNadZWTija2znMzJO6bY0RqAu2romJ1Kq1G72ejM3ffVxIo72YZhCn560UgtdKC2lSdTBhlqvjQO1dgw-LW1lpbBrC2yywP62ILFHG_bJd7T6P2hPPp79VeQbhedIP_4pkie2rFSl7e27C6u-6Ovzy8Ub-0H9AgNMmnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505235119</pqid></control><display><type>article</type><title>Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead seabream (Sparus aurata): illustration by a case study on mass spawning</title><source>Access via Wiley Online Library</source><creator>Chavanne, Hervé ; Parati, Katia ; Cambuli, Caterina ; Capoferri, Rossana ; Jiménez, Cristóbal Aguilera ; Galli, Andrea</creator><creatorcontrib>Chavanne, Hervé ; Parati, Katia ; Cambuli, Caterina ; Capoferri, Rossana ; Jiménez, Cristóbal Aguilera ; Galli, Andrea</creatorcontrib><description>In the absence of breeding strategy, natural spawning constitutes the breeding ground for fish farmers to empirically manage their commercial broodstock. In this context, we used six microsatellite markers to characterize the genetic pattern of six commercial seabream broodfish tanks having a common history spanning four generations. The progeny of one tank single‐day mass‐spawning event, reared in two different environments, was used to estimate the genetic parameters for body weight. Limited genetic differentiation was observed among broodfish groups. A panel of nine loci allowed us to unambiguously assign 95.4% of the offspring (1692) and identify 37 parents (65% of the total broodfish). The limited effective population size (Ne = 15.3) was due to the elevated variance of parental contributions and to broodfish failing to contribute to the progeny. The fluctuation of the allele frequency highlighted the risks of genetic drift and reduction in the heterozygosity in the next generations. Heritability for body weight was moderate at commercial size (0.40 ± 0.10) and the high genetic correlation at later stages laid the groundwork for precocious selection criteria for growth. The discussion opens on the opportunity to use mass spawning for selective breeding.</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.12013</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>genetic parameters ; mass spawning ; microsatellite markers ; parentage inference ; Sparus aurata</subject><ispartof>Aquaculture research, 2014-03, Vol.45 (4), p.577-590</ispartof><rights>2012 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2014 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3703-5d0ae5975a5ec968b7aea62892778e462d95baf84e9d35f6990a52fbbed090a33</citedby><cites>FETCH-LOGICAL-c3703-5d0ae5975a5ec968b7aea62892778e462d95baf84e9d35f6990a52fbbed090a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.12013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.12013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chavanne, Hervé</creatorcontrib><creatorcontrib>Parati, Katia</creatorcontrib><creatorcontrib>Cambuli, Caterina</creatorcontrib><creatorcontrib>Capoferri, Rossana</creatorcontrib><creatorcontrib>Jiménez, Cristóbal Aguilera</creatorcontrib><creatorcontrib>Galli, Andrea</creatorcontrib><title>Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead seabream (Sparus aurata): illustration by a case study on mass spawning</title><title>Aquaculture research</title><addtitle>Aquac Res</addtitle><description>In the absence of breeding strategy, natural spawning constitutes the breeding ground for fish farmers to empirically manage their commercial broodstock. In this context, we used six microsatellite markers to characterize the genetic pattern of six commercial seabream broodfish tanks having a common history spanning four generations. The progeny of one tank single‐day mass‐spawning event, reared in two different environments, was used to estimate the genetic parameters for body weight. Limited genetic differentiation was observed among broodfish groups. A panel of nine loci allowed us to unambiguously assign 95.4% of the offspring (1692) and identify 37 parents (65% of the total broodfish). The limited effective population size (Ne = 15.3) was due to the elevated variance of parental contributions and to broodfish failing to contribute to the progeny. The fluctuation of the allele frequency highlighted the risks of genetic drift and reduction in the heterozygosity in the next generations. Heritability for body weight was moderate at commercial size (0.40 ± 0.10) and the high genetic correlation at later stages laid the groundwork for precocious selection criteria for growth. The discussion opens on the opportunity to use mass spawning for selective breeding.</description><subject>genetic parameters</subject><subject>mass spawning</subject><subject>microsatellite markers</subject><subject>parentage inference</subject><subject>Sparus aurata</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhqMKpJbCof9gJC7tIa0dr5N1b6Xql7p8CKhacbEm8aS4ZJPU41D27_BL8bLAjbl4xvO8Y3neLNuT4lCmOMJAh7IQUm1lO1KVOi-kMM_Wuda51tXddvaC-UEIORNK7mQ_3_omDIyRus5HYlhi-EaBIQ7gaPRNhPiVINAYBjc10X8nwN7BPfUUfQMjxkihZxhaaDEsKbV8lyTogAnrQLiE_U8jhokBp4ARD47Bd93EMRV-6KFeAUKDTMBxcitIV0tkBh7xqff9_cvseYsd06s_5252c372-fQyX7y_uDo9WeSNqoTKtRNI2lQaNTWmnNcVEpbF3BRVNadZWTija2znMzJO6bY0RqAu2romJ1Kq1G72ejM3ffVxIo72YZhCn560UgtdKC2lSdTBhlqvjQO1dgw-LW1lpbBrC2yywP62ILFHG_bJd7T6P2hPPp79VeQbhedIP_4pkie2rFSl7e27C6u-6Ovzy8Ub-0H9AgNMmnk</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Chavanne, Hervé</creator><creator>Parati, Katia</creator><creator>Cambuli, Caterina</creator><creator>Capoferri, Rossana</creator><creator>Jiménez, Cristóbal Aguilera</creator><creator>Galli, Andrea</creator><general>Blackwell Publishing Ltd</general><general>Hindawi Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201403</creationdate><title>Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead seabream (Sparus aurata): illustration by a case study on mass spawning</title><author>Chavanne, Hervé ; Parati, Katia ; Cambuli, Caterina ; Capoferri, Rossana ; Jiménez, Cristóbal Aguilera ; Galli, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3703-5d0ae5975a5ec968b7aea62892778e462d95baf84e9d35f6990a52fbbed090a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>genetic parameters</topic><topic>mass spawning</topic><topic>microsatellite markers</topic><topic>parentage inference</topic><topic>Sparus aurata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavanne, Hervé</creatorcontrib><creatorcontrib>Parati, Katia</creatorcontrib><creatorcontrib>Cambuli, Caterina</creatorcontrib><creatorcontrib>Capoferri, Rossana</creatorcontrib><creatorcontrib>Jiménez, Cristóbal Aguilera</creatorcontrib><creatorcontrib>Galli, Andrea</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavanne, Hervé</au><au>Parati, Katia</au><au>Cambuli, Caterina</au><au>Capoferri, Rossana</au><au>Jiménez, Cristóbal Aguilera</au><au>Galli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead seabream (Sparus aurata): illustration by a case study on mass spawning</atitle><jtitle>Aquaculture research</jtitle><addtitle>Aquac Res</addtitle><date>2014-03</date><risdate>2014</risdate><volume>45</volume><issue>4</issue><spage>577</spage><epage>590</epage><pages>577-590</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>In the absence of breeding strategy, natural spawning constitutes the breeding ground for fish farmers to empirically manage their commercial broodstock. In this context, we used six microsatellite markers to characterize the genetic pattern of six commercial seabream broodfish tanks having a common history spanning four generations. The progeny of one tank single‐day mass‐spawning event, reared in two different environments, was used to estimate the genetic parameters for body weight. Limited genetic differentiation was observed among broodfish groups. A panel of nine loci allowed us to unambiguously assign 95.4% of the offspring (1692) and identify 37 parents (65% of the total broodfish). The limited effective population size (Ne = 15.3) was due to the elevated variance of parental contributions and to broodfish failing to contribute to the progeny. The fluctuation of the allele frequency highlighted the risks of genetic drift and reduction in the heterozygosity in the next generations. Heritability for body weight was moderate at commercial size (0.40 ± 0.10) and the high genetic correlation at later stages laid the groundwork for precocious selection criteria for growth. The discussion opens on the opportunity to use mass spawning for selective breeding.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/are.12013</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-557X
ispartof Aquaculture research, 2014-03, Vol.45 (4), p.577-590
issn 1355-557X
1365-2109
language eng
recordid cdi_proquest_journals_1505235119
source Access via Wiley Online Library
subjects genetic parameters
mass spawning
microsatellite markers
parentage inference
Sparus aurata
title Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead seabream (Sparus aurata): illustration by a case study on mass spawning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microsatellites%20markers%20to%20depict%20the%20reproductive%20and%20genetic%20patterns%20of%20farmed%20gilthead%20seabream%20(Sparus%20aurata):%20illustration%20by%20a%20case%20study%20on%20mass%20spawning&rft.jtitle=Aquaculture%20research&rft.au=Chavanne,%20Herv%C3%A9&rft.date=2014-03&rft.volume=45&rft.issue=4&rft.spage=577&rft.epage=590&rft.pages=577-590&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.12013&rft_dat=%3Cproquest_cross%3E3241021381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505235119&rft_id=info:pmid/&rfr_iscdi=true