Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead seabream (Sparus aurata): illustration by a case study on mass spawning
In the absence of breeding strategy, natural spawning constitutes the breeding ground for fish farmers to empirically manage their commercial broodstock. In this context, we used six microsatellite markers to characterize the genetic pattern of six commercial seabream broodfish tanks having a common...
Gespeichert in:
Veröffentlicht in: | Aquaculture research 2014-03, Vol.45 (4), p.577-590 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 590 |
---|---|
container_issue | 4 |
container_start_page | 577 |
container_title | Aquaculture research |
container_volume | 45 |
creator | Chavanne, Hervé Parati, Katia Cambuli, Caterina Capoferri, Rossana Jiménez, Cristóbal Aguilera Galli, Andrea |
description | In the absence of breeding strategy, natural spawning constitutes the breeding ground for fish farmers to empirically manage their commercial broodstock. In this context, we used six microsatellite markers to characterize the genetic pattern of six commercial seabream broodfish tanks having a common history spanning four generations. The progeny of one tank single‐day mass‐spawning event, reared in two different environments, was used to estimate the genetic parameters for body weight. Limited genetic differentiation was observed among broodfish groups. A panel of nine loci allowed us to unambiguously assign 95.4% of the offspring (1692) and identify 37 parents (65% of the total broodfish). The limited effective population size (Ne = 15.3) was due to the elevated variance of parental contributions and to broodfish failing to contribute to the progeny. The fluctuation of the allele frequency highlighted the risks of genetic drift and reduction in the heterozygosity in the next generations. Heritability for body weight was moderate at commercial size (0.40 ± 0.10) and the high genetic correlation at later stages laid the groundwork for precocious selection criteria for growth. The discussion opens on the opportunity to use mass spawning for selective breeding. |
doi_str_mv | 10.1111/are.12013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1505235119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3241021381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3703-5d0ae5975a5ec968b7aea62892778e462d95baf84e9d35f6990a52fbbed090a33</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhqMKpJbCof9gJC7tIa0dr5N1b6Xql7p8CKhacbEm8aS4ZJPU41D27_BL8bLAjbl4xvO8Y3neLNuT4lCmOMJAh7IQUm1lO1KVOi-kMM_Wuda51tXddvaC-UEIORNK7mQ_3_omDIyRus5HYlhi-EaBIQ7gaPRNhPiVINAYBjc10X8nwN7BPfUUfQMjxkihZxhaaDEsKbV8lyTogAnrQLiE_U8jhokBp4ARD47Bd93EMRV-6KFeAUKDTMBxcitIV0tkBh7xqff9_cvseYsd06s_5252c372-fQyX7y_uDo9WeSNqoTKtRNI2lQaNTWmnNcVEpbF3BRVNadZWTija2znMzJO6bY0RqAu2romJ1Kq1G72ejM3ffVxIo72YZhCn560UgtdKC2lSdTBhlqvjQO1dgw-LW1lpbBrC2yywP62ILFHG_bJd7T6P2hPPp79VeQbhedIP_4pkie2rFSl7e27C6u-6Ovzy8Ub-0H9AgNMmnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505235119</pqid></control><display><type>article</type><title>Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead seabream (Sparus aurata): illustration by a case study on mass spawning</title><source>Access via Wiley Online Library</source><creator>Chavanne, Hervé ; Parati, Katia ; Cambuli, Caterina ; Capoferri, Rossana ; Jiménez, Cristóbal Aguilera ; Galli, Andrea</creator><creatorcontrib>Chavanne, Hervé ; Parati, Katia ; Cambuli, Caterina ; Capoferri, Rossana ; Jiménez, Cristóbal Aguilera ; Galli, Andrea</creatorcontrib><description>In the absence of breeding strategy, natural spawning constitutes the breeding ground for fish farmers to empirically manage their commercial broodstock. In this context, we used six microsatellite markers to characterize the genetic pattern of six commercial seabream broodfish tanks having a common history spanning four generations. The progeny of one tank single‐day mass‐spawning event, reared in two different environments, was used to estimate the genetic parameters for body weight. Limited genetic differentiation was observed among broodfish groups. A panel of nine loci allowed us to unambiguously assign 95.4% of the offspring (1692) and identify 37 parents (65% of the total broodfish). The limited effective population size (Ne = 15.3) was due to the elevated variance of parental contributions and to broodfish failing to contribute to the progeny. The fluctuation of the allele frequency highlighted the risks of genetic drift and reduction in the heterozygosity in the next generations. Heritability for body weight was moderate at commercial size (0.40 ± 0.10) and the high genetic correlation at later stages laid the groundwork for precocious selection criteria for growth. The discussion opens on the opportunity to use mass spawning for selective breeding.</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.12013</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>genetic parameters ; mass spawning ; microsatellite markers ; parentage inference ; Sparus aurata</subject><ispartof>Aquaculture research, 2014-03, Vol.45 (4), p.577-590</ispartof><rights>2012 John Wiley & Sons Ltd</rights><rights>Copyright © 2014 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3703-5d0ae5975a5ec968b7aea62892778e462d95baf84e9d35f6990a52fbbed090a33</citedby><cites>FETCH-LOGICAL-c3703-5d0ae5975a5ec968b7aea62892778e462d95baf84e9d35f6990a52fbbed090a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.12013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.12013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chavanne, Hervé</creatorcontrib><creatorcontrib>Parati, Katia</creatorcontrib><creatorcontrib>Cambuli, Caterina</creatorcontrib><creatorcontrib>Capoferri, Rossana</creatorcontrib><creatorcontrib>Jiménez, Cristóbal Aguilera</creatorcontrib><creatorcontrib>Galli, Andrea</creatorcontrib><title>Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead seabream (Sparus aurata): illustration by a case study on mass spawning</title><title>Aquaculture research</title><addtitle>Aquac Res</addtitle><description>In the absence of breeding strategy, natural spawning constitutes the breeding ground for fish farmers to empirically manage their commercial broodstock. In this context, we used six microsatellite markers to characterize the genetic pattern of six commercial seabream broodfish tanks having a common history spanning four generations. The progeny of one tank single‐day mass‐spawning event, reared in two different environments, was used to estimate the genetic parameters for body weight. Limited genetic differentiation was observed among broodfish groups. A panel of nine loci allowed us to unambiguously assign 95.4% of the offspring (1692) and identify 37 parents (65% of the total broodfish). The limited effective population size (Ne = 15.3) was due to the elevated variance of parental contributions and to broodfish failing to contribute to the progeny. The fluctuation of the allele frequency highlighted the risks of genetic drift and reduction in the heterozygosity in the next generations. Heritability for body weight was moderate at commercial size (0.40 ± 0.10) and the high genetic correlation at later stages laid the groundwork for precocious selection criteria for growth. The discussion opens on the opportunity to use mass spawning for selective breeding.</description><subject>genetic parameters</subject><subject>mass spawning</subject><subject>microsatellite markers</subject><subject>parentage inference</subject><subject>Sparus aurata</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhqMKpJbCof9gJC7tIa0dr5N1b6Xql7p8CKhacbEm8aS4ZJPU41D27_BL8bLAjbl4xvO8Y3neLNuT4lCmOMJAh7IQUm1lO1KVOi-kMM_Wuda51tXddvaC-UEIORNK7mQ_3_omDIyRus5HYlhi-EaBIQ7gaPRNhPiVINAYBjc10X8nwN7BPfUUfQMjxkihZxhaaDEsKbV8lyTogAnrQLiE_U8jhokBp4ARD47Bd93EMRV-6KFeAUKDTMBxcitIV0tkBh7xqff9_cvseYsd06s_5252c372-fQyX7y_uDo9WeSNqoTKtRNI2lQaNTWmnNcVEpbF3BRVNadZWTija2znMzJO6bY0RqAu2romJ1Kq1G72ejM3ffVxIo72YZhCn560UgtdKC2lSdTBhlqvjQO1dgw-LW1lpbBrC2yywP62ILFHG_bJd7T6P2hPPp79VeQbhedIP_4pkie2rFSl7e27C6u-6Ovzy8Ub-0H9AgNMmnk</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Chavanne, Hervé</creator><creator>Parati, Katia</creator><creator>Cambuli, Caterina</creator><creator>Capoferri, Rossana</creator><creator>Jiménez, Cristóbal Aguilera</creator><creator>Galli, Andrea</creator><general>Blackwell Publishing Ltd</general><general>Hindawi Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201403</creationdate><title>Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead seabream (Sparus aurata): illustration by a case study on mass spawning</title><author>Chavanne, Hervé ; Parati, Katia ; Cambuli, Caterina ; Capoferri, Rossana ; Jiménez, Cristóbal Aguilera ; Galli, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3703-5d0ae5975a5ec968b7aea62892778e462d95baf84e9d35f6990a52fbbed090a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>genetic parameters</topic><topic>mass spawning</topic><topic>microsatellite markers</topic><topic>parentage inference</topic><topic>Sparus aurata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavanne, Hervé</creatorcontrib><creatorcontrib>Parati, Katia</creatorcontrib><creatorcontrib>Cambuli, Caterina</creatorcontrib><creatorcontrib>Capoferri, Rossana</creatorcontrib><creatorcontrib>Jiménez, Cristóbal Aguilera</creatorcontrib><creatorcontrib>Galli, Andrea</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavanne, Hervé</au><au>Parati, Katia</au><au>Cambuli, Caterina</au><au>Capoferri, Rossana</au><au>Jiménez, Cristóbal Aguilera</au><au>Galli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead seabream (Sparus aurata): illustration by a case study on mass spawning</atitle><jtitle>Aquaculture research</jtitle><addtitle>Aquac Res</addtitle><date>2014-03</date><risdate>2014</risdate><volume>45</volume><issue>4</issue><spage>577</spage><epage>590</epage><pages>577-590</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>In the absence of breeding strategy, natural spawning constitutes the breeding ground for fish farmers to empirically manage their commercial broodstock. In this context, we used six microsatellite markers to characterize the genetic pattern of six commercial seabream broodfish tanks having a common history spanning four generations. The progeny of one tank single‐day mass‐spawning event, reared in two different environments, was used to estimate the genetic parameters for body weight. Limited genetic differentiation was observed among broodfish groups. A panel of nine loci allowed us to unambiguously assign 95.4% of the offspring (1692) and identify 37 parents (65% of the total broodfish). The limited effective population size (Ne = 15.3) was due to the elevated variance of parental contributions and to broodfish failing to contribute to the progeny. The fluctuation of the allele frequency highlighted the risks of genetic drift and reduction in the heterozygosity in the next generations. Heritability for body weight was moderate at commercial size (0.40 ± 0.10) and the high genetic correlation at later stages laid the groundwork for precocious selection criteria for growth. The discussion opens on the opportunity to use mass spawning for selective breeding.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/are.12013</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-557X |
ispartof | Aquaculture research, 2014-03, Vol.45 (4), p.577-590 |
issn | 1355-557X 1365-2109 |
language | eng |
recordid | cdi_proquest_journals_1505235119 |
source | Access via Wiley Online Library |
subjects | genetic parameters mass spawning microsatellite markers parentage inference Sparus aurata |
title | Microsatellites markers to depict the reproductive and genetic patterns of farmed gilthead seabream (Sparus aurata): illustration by a case study on mass spawning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microsatellites%20markers%20to%20depict%20the%20reproductive%20and%20genetic%20patterns%20of%20farmed%20gilthead%20seabream%20(Sparus%20aurata):%20illustration%20by%20a%20case%20study%20on%20mass%20spawning&rft.jtitle=Aquaculture%20research&rft.au=Chavanne,%20Herv%C3%A9&rft.date=2014-03&rft.volume=45&rft.issue=4&rft.spage=577&rft.epage=590&rft.pages=577-590&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.12013&rft_dat=%3Cproquest_cross%3E3241021381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505235119&rft_id=info:pmid/&rfr_iscdi=true |