Large-scale study of city dynamics and urban social behavior using participatory sensing

The ubiquitous availability of computing technology such as smartphones, tablets, and other easily portable devices, and the worldwide adoption of social networking sites make it increasingly possible for one to be connected and continuously contribute to this massively distributed information publi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications 2014-02, Vol.21 (1), p.42-51
Hauptverfasser: Silva, Thiago H., Vaz De Melo, Pedro O. S., Almeida, Jussara M., Loureiro, Antonio A. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 42
container_title IEEE wireless communications
container_volume 21
creator Silva, Thiago H.
Vaz De Melo, Pedro O. S.
Almeida, Jussara M.
Loureiro, Antonio A. F.
description The ubiquitous availability of computing technology such as smartphones, tablets, and other easily portable devices, and the worldwide adoption of social networking sites make it increasingly possible for one to be connected and continuously contribute to this massively distributed information publishing process. In this scenario, people act as social sensors, voluntarily providing data that capture their daily life experiences, and offering diverse observations on both the physical world (e.g., location) and the online world (e.g., events). This large amount of social data can provide new forms of valuable information that are currently not available on this scale via any traditional data collection methods, and can be used to enhance decision making processes. In this article, we argue that location-based social media systems, such as Instagram and Foursquare, can act as valuable sources of large-scale sensing, providing access to important characteristics of urban social behavior much more quickly than traditional methods. We also discuss different applications and techniques that can exploit the data shared in these systems to enable large-scale and near-real-time analyses and visualization of different aspects of city dynamics.
doi_str_mv 10.1109/MWC.2014.6757896
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1505080103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6757896</ieee_id><sourcerecordid>1800427446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-a3ee63f90c798221ed46c1903501b8405ebdfb4dd811c65f4a52cc2545db59323</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7eBS8BL166Tj6bHmXxC1a8KHoLaZKukW5bk1bov7fLrh48zTDzvMPwIHROYEEIFNdPb8sFBcIXMhe5KuQBmhEhVAZS5YfbnsmMUMWP0UlKnwAkl0LO0PvKxLXPkjW1x6kf3IjbCtvQj9iNjdkEm7BpHB5iaRqcWhtMjUv_Yb5DG_GQQrPGnYl9sKEzfRtHnHyznZ6io8rUyZ_t6xy93t2-LB-y1fP94_JmlVnOaJ8Z5r1kVQE2LxSlxDsuLSmACSCl4iB86aqSO6cIsVJU3AhqLRVcuFIUjLI5utrd7WL7NfjU601I1te1aXw7JE0UAKc553JCL_-hn-0Qm-k7TQQIUECATRTsKBvblKKvdBfDxsRRE9Bb1XpSrbeq9V71FLnYRYL3_g__3f4Aikt6AQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505080103</pqid></control><display><type>article</type><title>Large-scale study of city dynamics and urban social behavior using participatory sensing</title><source>IEEE Electronic Library (IEL)</source><creator>Silva, Thiago H. ; Vaz De Melo, Pedro O. S. ; Almeida, Jussara M. ; Loureiro, Antonio A. F.</creator><creatorcontrib>Silva, Thiago H. ; Vaz De Melo, Pedro O. S. ; Almeida, Jussara M. ; Loureiro, Antonio A. F.</creatorcontrib><description>The ubiquitous availability of computing technology such as smartphones, tablets, and other easily portable devices, and the worldwide adoption of social networking sites make it increasingly possible for one to be connected and continuously contribute to this massively distributed information publishing process. In this scenario, people act as social sensors, voluntarily providing data that capture their daily life experiences, and offering diverse observations on both the physical world (e.g., location) and the online world (e.g., events). This large amount of social data can provide new forms of valuable information that are currently not available on this scale via any traditional data collection methods, and can be used to enhance decision making processes. In this article, we argue that location-based social media systems, such as Instagram and Foursquare, can act as valuable sources of large-scale sensing, providing access to important characteristics of urban social behavior much more quickly than traditional methods. We also discuss different applications and techniques that can exploit the data shared in these systems to enable large-scale and near-real-time analyses and visualization of different aspects of city dynamics.</description><identifier>ISSN: 1536-1284</identifier><identifier>EISSN: 1558-0687</identifier><identifier>DOI: 10.1109/MWC.2014.6757896</identifier><identifier>CODEN: IWCEAS</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data visualization ; Decision making ; Detection ; Devices ; Dynamic tests ; Dynamical systems ; Dynamics ; Image edge detection ; Real-time systems ; Sensors ; Smart phones ; Social factors ; Social network services ; Social networks ; Tablet computers ; Urban areas ; Web sites ; Wireless communication</subject><ispartof>IEEE wireless communications, 2014-02, Vol.21 (1), p.42-51</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-a3ee63f90c798221ed46c1903501b8405ebdfb4dd811c65f4a52cc2545db59323</citedby><cites>FETCH-LOGICAL-c432t-a3ee63f90c798221ed46c1903501b8405ebdfb4dd811c65f4a52cc2545db59323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6757896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6757896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Silva, Thiago H.</creatorcontrib><creatorcontrib>Vaz De Melo, Pedro O. S.</creatorcontrib><creatorcontrib>Almeida, Jussara M.</creatorcontrib><creatorcontrib>Loureiro, Antonio A. F.</creatorcontrib><title>Large-scale study of city dynamics and urban social behavior using participatory sensing</title><title>IEEE wireless communications</title><addtitle>WC-M</addtitle><description>The ubiquitous availability of computing technology such as smartphones, tablets, and other easily portable devices, and the worldwide adoption of social networking sites make it increasingly possible for one to be connected and continuously contribute to this massively distributed information publishing process. In this scenario, people act as social sensors, voluntarily providing data that capture their daily life experiences, and offering diverse observations on both the physical world (e.g., location) and the online world (e.g., events). This large amount of social data can provide new forms of valuable information that are currently not available on this scale via any traditional data collection methods, and can be used to enhance decision making processes. In this article, we argue that location-based social media systems, such as Instagram and Foursquare, can act as valuable sources of large-scale sensing, providing access to important characteristics of urban social behavior much more quickly than traditional methods. We also discuss different applications and techniques that can exploit the data shared in these systems to enable large-scale and near-real-time analyses and visualization of different aspects of city dynamics.</description><subject>Data visualization</subject><subject>Decision making</subject><subject>Detection</subject><subject>Devices</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Image edge detection</subject><subject>Real-time systems</subject><subject>Sensors</subject><subject>Smart phones</subject><subject>Social factors</subject><subject>Social network services</subject><subject>Social networks</subject><subject>Tablet computers</subject><subject>Urban areas</subject><subject>Web sites</subject><subject>Wireless communication</subject><issn>1536-1284</issn><issn>1558-0687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMouK7eBS8BL166Tj6bHmXxC1a8KHoLaZKukW5bk1bov7fLrh48zTDzvMPwIHROYEEIFNdPb8sFBcIXMhe5KuQBmhEhVAZS5YfbnsmMUMWP0UlKnwAkl0LO0PvKxLXPkjW1x6kf3IjbCtvQj9iNjdkEm7BpHB5iaRqcWhtMjUv_Yb5DG_GQQrPGnYl9sKEzfRtHnHyznZ6io8rUyZ_t6xy93t2-LB-y1fP94_JmlVnOaJ8Z5r1kVQE2LxSlxDsuLSmACSCl4iB86aqSO6cIsVJU3AhqLRVcuFIUjLI5utrd7WL7NfjU601I1te1aXw7JE0UAKc553JCL_-hn-0Qm-k7TQQIUECATRTsKBvblKKvdBfDxsRRE9Bb1XpSrbeq9V71FLnYRYL3_g__3f4Aikt6AQ</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Silva, Thiago H.</creator><creator>Vaz De Melo, Pedro O. S.</creator><creator>Almeida, Jussara M.</creator><creator>Loureiro, Antonio A. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20140201</creationdate><title>Large-scale study of city dynamics and urban social behavior using participatory sensing</title><author>Silva, Thiago H. ; Vaz De Melo, Pedro O. S. ; Almeida, Jussara M. ; Loureiro, Antonio A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-a3ee63f90c798221ed46c1903501b8405ebdfb4dd811c65f4a52cc2545db59323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Data visualization</topic><topic>Decision making</topic><topic>Detection</topic><topic>Devices</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Image edge detection</topic><topic>Real-time systems</topic><topic>Sensors</topic><topic>Smart phones</topic><topic>Social factors</topic><topic>Social network services</topic><topic>Social networks</topic><topic>Tablet computers</topic><topic>Urban areas</topic><topic>Web sites</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Thiago H.</creatorcontrib><creatorcontrib>Vaz De Melo, Pedro O. S.</creatorcontrib><creatorcontrib>Almeida, Jussara M.</creatorcontrib><creatorcontrib>Loureiro, Antonio A. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Silva, Thiago H.</au><au>Vaz De Melo, Pedro O. S.</au><au>Almeida, Jussara M.</au><au>Loureiro, Antonio A. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale study of city dynamics and urban social behavior using participatory sensing</atitle><jtitle>IEEE wireless communications</jtitle><stitle>WC-M</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>21</volume><issue>1</issue><spage>42</spage><epage>51</epage><pages>42-51</pages><issn>1536-1284</issn><eissn>1558-0687</eissn><coden>IWCEAS</coden><abstract>The ubiquitous availability of computing technology such as smartphones, tablets, and other easily portable devices, and the worldwide adoption of social networking sites make it increasingly possible for one to be connected and continuously contribute to this massively distributed information publishing process. In this scenario, people act as social sensors, voluntarily providing data that capture their daily life experiences, and offering diverse observations on both the physical world (e.g., location) and the online world (e.g., events). This large amount of social data can provide new forms of valuable information that are currently not available on this scale via any traditional data collection methods, and can be used to enhance decision making processes. In this article, we argue that location-based social media systems, such as Instagram and Foursquare, can act as valuable sources of large-scale sensing, providing access to important characteristics of urban social behavior much more quickly than traditional methods. We also discuss different applications and techniques that can exploit the data shared in these systems to enable large-scale and near-real-time analyses and visualization of different aspects of city dynamics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MWC.2014.6757896</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1284
ispartof IEEE wireless communications, 2014-02, Vol.21 (1), p.42-51
issn 1536-1284
1558-0687
language eng
recordid cdi_proquest_journals_1505080103
source IEEE Electronic Library (IEL)
subjects Data visualization
Decision making
Detection
Devices
Dynamic tests
Dynamical systems
Dynamics
Image edge detection
Real-time systems
Sensors
Smart phones
Social factors
Social network services
Social networks
Tablet computers
Urban areas
Web sites
Wireless communication
title Large-scale study of city dynamics and urban social behavior using participatory sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20study%20of%20city%20dynamics%20and%20urban%20social%20behavior%20using%20participatory%20sensing&rft.jtitle=IEEE%20wireless%20communications&rft.au=Silva,%20Thiago%20H.&rft.date=2014-02-01&rft.volume=21&rft.issue=1&rft.spage=42&rft.epage=51&rft.pages=42-51&rft.issn=1536-1284&rft.eissn=1558-0687&rft.coden=IWCEAS&rft_id=info:doi/10.1109/MWC.2014.6757896&rft_dat=%3Cproquest_RIE%3E1800427446%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505080103&rft_id=info:pmid/&rft_ieee_id=6757896&rfr_iscdi=true