Large-scale study of city dynamics and urban social behavior using participatory sensing
The ubiquitous availability of computing technology such as smartphones, tablets, and other easily portable devices, and the worldwide adoption of social networking sites make it increasingly possible for one to be connected and continuously contribute to this massively distributed information publi...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications 2014-02, Vol.21 (1), p.42-51 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 42 |
container_title | IEEE wireless communications |
container_volume | 21 |
creator | Silva, Thiago H. Vaz De Melo, Pedro O. S. Almeida, Jussara M. Loureiro, Antonio A. F. |
description | The ubiquitous availability of computing technology such as smartphones, tablets, and other easily portable devices, and the worldwide adoption of social networking sites make it increasingly possible for one to be connected and continuously contribute to this massively distributed information publishing process. In this scenario, people act as social sensors, voluntarily providing data that capture their daily life experiences, and offering diverse observations on both the physical world (e.g., location) and the online world (e.g., events). This large amount of social data can provide new forms of valuable information that are currently not available on this scale via any traditional data collection methods, and can be used to enhance decision making processes. In this article, we argue that location-based social media systems, such as Instagram and Foursquare, can act as valuable sources of large-scale sensing, providing access to important characteristics of urban social behavior much more quickly than traditional methods. We also discuss different applications and techniques that can exploit the data shared in these systems to enable large-scale and near-real-time analyses and visualization of different aspects of city dynamics. |
doi_str_mv | 10.1109/MWC.2014.6757896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1505080103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6757896</ieee_id><sourcerecordid>1800427446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-a3ee63f90c798221ed46c1903501b8405ebdfb4dd811c65f4a52cc2545db59323</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7eBS8BL166Tj6bHmXxC1a8KHoLaZKukW5bk1bov7fLrh48zTDzvMPwIHROYEEIFNdPb8sFBcIXMhe5KuQBmhEhVAZS5YfbnsmMUMWP0UlKnwAkl0LO0PvKxLXPkjW1x6kf3IjbCtvQj9iNjdkEm7BpHB5iaRqcWhtMjUv_Yb5DG_GQQrPGnYl9sKEzfRtHnHyznZ6io8rUyZ_t6xy93t2-LB-y1fP94_JmlVnOaJ8Z5r1kVQE2LxSlxDsuLSmACSCl4iB86aqSO6cIsVJU3AhqLRVcuFIUjLI5utrd7WL7NfjU601I1te1aXw7JE0UAKc553JCL_-hn-0Qm-k7TQQIUECATRTsKBvblKKvdBfDxsRRE9Bb1XpSrbeq9V71FLnYRYL3_g__3f4Aikt6AQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505080103</pqid></control><display><type>article</type><title>Large-scale study of city dynamics and urban social behavior using participatory sensing</title><source>IEEE Electronic Library (IEL)</source><creator>Silva, Thiago H. ; Vaz De Melo, Pedro O. S. ; Almeida, Jussara M. ; Loureiro, Antonio A. F.</creator><creatorcontrib>Silva, Thiago H. ; Vaz De Melo, Pedro O. S. ; Almeida, Jussara M. ; Loureiro, Antonio A. F.</creatorcontrib><description>The ubiquitous availability of computing technology such as smartphones, tablets, and other easily portable devices, and the worldwide adoption of social networking sites make it increasingly possible for one to be connected and continuously contribute to this massively distributed information publishing process. In this scenario, people act as social sensors, voluntarily providing data that capture their daily life experiences, and offering diverse observations on both the physical world (e.g., location) and the online world (e.g., events). This large amount of social data can provide new forms of valuable information that are currently not available on this scale via any traditional data collection methods, and can be used to enhance decision making processes. In this article, we argue that location-based social media systems, such as Instagram and Foursquare, can act as valuable sources of large-scale sensing, providing access to important characteristics of urban social behavior much more quickly than traditional methods. We also discuss different applications and techniques that can exploit the data shared in these systems to enable large-scale and near-real-time analyses and visualization of different aspects of city dynamics.</description><identifier>ISSN: 1536-1284</identifier><identifier>EISSN: 1558-0687</identifier><identifier>DOI: 10.1109/MWC.2014.6757896</identifier><identifier>CODEN: IWCEAS</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data visualization ; Decision making ; Detection ; Devices ; Dynamic tests ; Dynamical systems ; Dynamics ; Image edge detection ; Real-time systems ; Sensors ; Smart phones ; Social factors ; Social network services ; Social networks ; Tablet computers ; Urban areas ; Web sites ; Wireless communication</subject><ispartof>IEEE wireless communications, 2014-02, Vol.21 (1), p.42-51</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-a3ee63f90c798221ed46c1903501b8405ebdfb4dd811c65f4a52cc2545db59323</citedby><cites>FETCH-LOGICAL-c432t-a3ee63f90c798221ed46c1903501b8405ebdfb4dd811c65f4a52cc2545db59323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6757896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6757896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Silva, Thiago H.</creatorcontrib><creatorcontrib>Vaz De Melo, Pedro O. S.</creatorcontrib><creatorcontrib>Almeida, Jussara M.</creatorcontrib><creatorcontrib>Loureiro, Antonio A. F.</creatorcontrib><title>Large-scale study of city dynamics and urban social behavior using participatory sensing</title><title>IEEE wireless communications</title><addtitle>WC-M</addtitle><description>The ubiquitous availability of computing technology such as smartphones, tablets, and other easily portable devices, and the worldwide adoption of social networking sites make it increasingly possible for one to be connected and continuously contribute to this massively distributed information publishing process. In this scenario, people act as social sensors, voluntarily providing data that capture their daily life experiences, and offering diverse observations on both the physical world (e.g., location) and the online world (e.g., events). This large amount of social data can provide new forms of valuable information that are currently not available on this scale via any traditional data collection methods, and can be used to enhance decision making processes. In this article, we argue that location-based social media systems, such as Instagram and Foursquare, can act as valuable sources of large-scale sensing, providing access to important characteristics of urban social behavior much more quickly than traditional methods. We also discuss different applications and techniques that can exploit the data shared in these systems to enable large-scale and near-real-time analyses and visualization of different aspects of city dynamics.</description><subject>Data visualization</subject><subject>Decision making</subject><subject>Detection</subject><subject>Devices</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Image edge detection</subject><subject>Real-time systems</subject><subject>Sensors</subject><subject>Smart phones</subject><subject>Social factors</subject><subject>Social network services</subject><subject>Social networks</subject><subject>Tablet computers</subject><subject>Urban areas</subject><subject>Web sites</subject><subject>Wireless communication</subject><issn>1536-1284</issn><issn>1558-0687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMouK7eBS8BL166Tj6bHmXxC1a8KHoLaZKukW5bk1bov7fLrh48zTDzvMPwIHROYEEIFNdPb8sFBcIXMhe5KuQBmhEhVAZS5YfbnsmMUMWP0UlKnwAkl0LO0PvKxLXPkjW1x6kf3IjbCtvQj9iNjdkEm7BpHB5iaRqcWhtMjUv_Yb5DG_GQQrPGnYl9sKEzfRtHnHyznZ6io8rUyZ_t6xy93t2-LB-y1fP94_JmlVnOaJ8Z5r1kVQE2LxSlxDsuLSmACSCl4iB86aqSO6cIsVJU3AhqLRVcuFIUjLI5utrd7WL7NfjU601I1te1aXw7JE0UAKc553JCL_-hn-0Qm-k7TQQIUECATRTsKBvblKKvdBfDxsRRE9Bb1XpSrbeq9V71FLnYRYL3_g__3f4Aikt6AQ</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Silva, Thiago H.</creator><creator>Vaz De Melo, Pedro O. S.</creator><creator>Almeida, Jussara M.</creator><creator>Loureiro, Antonio A. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20140201</creationdate><title>Large-scale study of city dynamics and urban social behavior using participatory sensing</title><author>Silva, Thiago H. ; Vaz De Melo, Pedro O. S. ; Almeida, Jussara M. ; Loureiro, Antonio A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-a3ee63f90c798221ed46c1903501b8405ebdfb4dd811c65f4a52cc2545db59323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Data visualization</topic><topic>Decision making</topic><topic>Detection</topic><topic>Devices</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Image edge detection</topic><topic>Real-time systems</topic><topic>Sensors</topic><topic>Smart phones</topic><topic>Social factors</topic><topic>Social network services</topic><topic>Social networks</topic><topic>Tablet computers</topic><topic>Urban areas</topic><topic>Web sites</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Thiago H.</creatorcontrib><creatorcontrib>Vaz De Melo, Pedro O. S.</creatorcontrib><creatorcontrib>Almeida, Jussara M.</creatorcontrib><creatorcontrib>Loureiro, Antonio A. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Silva, Thiago H.</au><au>Vaz De Melo, Pedro O. S.</au><au>Almeida, Jussara M.</au><au>Loureiro, Antonio A. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale study of city dynamics and urban social behavior using participatory sensing</atitle><jtitle>IEEE wireless communications</jtitle><stitle>WC-M</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>21</volume><issue>1</issue><spage>42</spage><epage>51</epage><pages>42-51</pages><issn>1536-1284</issn><eissn>1558-0687</eissn><coden>IWCEAS</coden><abstract>The ubiquitous availability of computing technology such as smartphones, tablets, and other easily portable devices, and the worldwide adoption of social networking sites make it increasingly possible for one to be connected and continuously contribute to this massively distributed information publishing process. In this scenario, people act as social sensors, voluntarily providing data that capture their daily life experiences, and offering diverse observations on both the physical world (e.g., location) and the online world (e.g., events). This large amount of social data can provide new forms of valuable information that are currently not available on this scale via any traditional data collection methods, and can be used to enhance decision making processes. In this article, we argue that location-based social media systems, such as Instagram and Foursquare, can act as valuable sources of large-scale sensing, providing access to important characteristics of urban social behavior much more quickly than traditional methods. We also discuss different applications and techniques that can exploit the data shared in these systems to enable large-scale and near-real-time analyses and visualization of different aspects of city dynamics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MWC.2014.6757896</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1284 |
ispartof | IEEE wireless communications, 2014-02, Vol.21 (1), p.42-51 |
issn | 1536-1284 1558-0687 |
language | eng |
recordid | cdi_proquest_journals_1505080103 |
source | IEEE Electronic Library (IEL) |
subjects | Data visualization Decision making Detection Devices Dynamic tests Dynamical systems Dynamics Image edge detection Real-time systems Sensors Smart phones Social factors Social network services Social networks Tablet computers Urban areas Web sites Wireless communication |
title | Large-scale study of city dynamics and urban social behavior using participatory sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20study%20of%20city%20dynamics%20and%20urban%20social%20behavior%20using%20participatory%20sensing&rft.jtitle=IEEE%20wireless%20communications&rft.au=Silva,%20Thiago%20H.&rft.date=2014-02-01&rft.volume=21&rft.issue=1&rft.spage=42&rft.epage=51&rft.pages=42-51&rft.issn=1536-1284&rft.eissn=1558-0687&rft.coden=IWCEAS&rft_id=info:doi/10.1109/MWC.2014.6757896&rft_dat=%3Cproquest_RIE%3E1800427446%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505080103&rft_id=info:pmid/&rft_ieee_id=6757896&rfr_iscdi=true |