Ground Clutter Detection Using the Statistical Properties of Signals Received With a Polarimetric Radar
Polarimetric weather radars provide additional measurements that allow better characterization of the targeted medium. Because ground clutter has different polarimetric characteristics from weather echoes, dual-polarization measurements can be used to distinguish one from the other. Ground clutter a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2014-02, Vol.62 (3), p.597-606 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 606 |
---|---|
container_issue | 3 |
container_start_page | 597 |
container_title | IEEE transactions on signal processing |
container_volume | 62 |
creator | Yinguang Li Guifu Zhang Doviak, Richard J. |
description | Polarimetric weather radars provide additional measurements that allow better characterization of the targeted medium. Because ground clutter has different polarimetric characteristics from weather echoes, dual-polarization measurements can be used to distinguish one from the other. Ground clutter and weather signals also have different statistical properties which can be utilized to distinguish one from the other. A test statistic, obtained from the generalized likelihood ratio test (GLRT), and a simple Bayesian classifier (SBC), with inputs from the mean and covariance of the received signals, are developed to detect ground clutter in the presence of weather signals. It is found that the test statistic produces false detections caused by narrow-band zero-velocity weather signals while the SBC can effectively neutralize them. This work is aimed at detecting ground clutter based solely on data from each resolution volume. The performances of the test statistic and SBC are shown by applying them to radar data collected with the University of Oklahoma-Polarimetric Radar for Innovation in Meteorology and Engineering. |
doi_str_mv | 10.1109/TSP.2013.2293118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1504545346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6675884</ieee_id><sourcerecordid>3237813531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-96ac72cf7f4ca336c0a19a901027598ca5a3bfc165dbb44f8c8c44c40dbf02843</originalsourceid><addsrcrecordid>eNpdkE1LHEEQhgeJEGO8B7w0SCCX2fT3zBxljR8gZHEVvTW9NdVryzi96e4J-O_tZRcPnqqgnrfgfarqB6Mzxmj3-365mHHKxIzzTjDWHlRHrJOsprLRX8pOlahV2zx9rb6l9EIpk7LTR9X6KoZp7Ml8mHLGSC4wI2QfRvKQ_Lgm-RnJMtvsU_ZgB7KIYYMxe0wkOLL069EOidwhoP-PPXn0-ZlYsgiDjf4Vc_RA7mxv4_fq0BUST_bzuHq4_HM_v65v_17dzM9vaxBK5rrTFhoOrnESrBAaqGWd7SijvFFdC1ZZsXLAtOpXKyldCy1ICZL2K0d5K8Vx9Wv3dxPDvwlTNq8-AQ6DHTFMyTDdMNlwLlhBzz6hL2GK2z6GKSqVVELqQtEdBTGkFNGZTWlm45th1GzNm2LebM2bvfkS-bl_bFNx5qIdwaePHG85LWVp4U53nEfEj7PWjWpLk3cMN4wy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504545346</pqid></control><display><type>article</type><title>Ground Clutter Detection Using the Statistical Properties of Signals Received With a Polarimetric Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Yinguang Li ; Guifu Zhang ; Doviak, Richard J.</creator><creatorcontrib>Yinguang Li ; Guifu Zhang ; Doviak, Richard J.</creatorcontrib><description>Polarimetric weather radars provide additional measurements that allow better characterization of the targeted medium. Because ground clutter has different polarimetric characteristics from weather echoes, dual-polarization measurements can be used to distinguish one from the other. Ground clutter and weather signals also have different statistical properties which can be utilized to distinguish one from the other. A test statistic, obtained from the generalized likelihood ratio test (GLRT), and a simple Bayesian classifier (SBC), with inputs from the mean and covariance of the received signals, are developed to detect ground clutter in the presence of weather signals. It is found that the test statistic produces false detections caused by narrow-band zero-velocity weather signals while the SBC can effectively neutralize them. This work is aimed at detecting ground clutter based solely on data from each resolution volume. The performances of the test statistic and SBC are shown by applying them to radar data collected with the University of Oklahoma-Polarimetric Radar for Innovation in Meteorology and Engineering.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2013.2293118</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bayes methods ; Climatology ; Clutter ; Detection, estimation, filtering, equalization, prediction ; Economic models ; Exact sciences and technology ; Grounds ; Information, signal and communications theory ; Likelihood ratio ; Meteorological radar ; Meteorology ; Noise ; Radar ; Radar clutter ; radar detection ; radar polarimetry ; Signal and communications theory ; Signal, noise ; Statistical analysis ; Statistics ; Telecommunications and information theory ; Transaction processing ; Vectors ; Weather</subject><ispartof>IEEE transactions on signal processing, 2014-02, Vol.62 (3), p.597-606</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-96ac72cf7f4ca336c0a19a901027598ca5a3bfc165dbb44f8c8c44c40dbf02843</citedby><cites>FETCH-LOGICAL-c354t-96ac72cf7f4ca336c0a19a901027598ca5a3bfc165dbb44f8c8c44c40dbf02843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6675884$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6675884$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28203540$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yinguang Li</creatorcontrib><creatorcontrib>Guifu Zhang</creatorcontrib><creatorcontrib>Doviak, Richard J.</creatorcontrib><title>Ground Clutter Detection Using the Statistical Properties of Signals Received With a Polarimetric Radar</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Polarimetric weather radars provide additional measurements that allow better characterization of the targeted medium. Because ground clutter has different polarimetric characteristics from weather echoes, dual-polarization measurements can be used to distinguish one from the other. Ground clutter and weather signals also have different statistical properties which can be utilized to distinguish one from the other. A test statistic, obtained from the generalized likelihood ratio test (GLRT), and a simple Bayesian classifier (SBC), with inputs from the mean and covariance of the received signals, are developed to detect ground clutter in the presence of weather signals. It is found that the test statistic produces false detections caused by narrow-band zero-velocity weather signals while the SBC can effectively neutralize them. This work is aimed at detecting ground clutter based solely on data from each resolution volume. The performances of the test statistic and SBC are shown by applying them to radar data collected with the University of Oklahoma-Polarimetric Radar for Innovation in Meteorology and Engineering.</description><subject>Applied sciences</subject><subject>Bayes methods</subject><subject>Climatology</subject><subject>Clutter</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Economic models</subject><subject>Exact sciences and technology</subject><subject>Grounds</subject><subject>Information, signal and communications theory</subject><subject>Likelihood ratio</subject><subject>Meteorological radar</subject><subject>Meteorology</subject><subject>Noise</subject><subject>Radar</subject><subject>Radar clutter</subject><subject>radar detection</subject><subject>radar polarimetry</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Telecommunications and information theory</subject><subject>Transaction processing</subject><subject>Vectors</subject><subject>Weather</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LHEEQhgeJEGO8B7w0SCCX2fT3zBxljR8gZHEVvTW9NdVryzi96e4J-O_tZRcPnqqgnrfgfarqB6Mzxmj3-365mHHKxIzzTjDWHlRHrJOsprLRX8pOlahV2zx9rb6l9EIpk7LTR9X6KoZp7Ml8mHLGSC4wI2QfRvKQ_Lgm-RnJMtvsU_ZgB7KIYYMxe0wkOLL069EOidwhoP-PPXn0-ZlYsgiDjf4Vc_RA7mxv4_fq0BUST_bzuHq4_HM_v65v_17dzM9vaxBK5rrTFhoOrnESrBAaqGWd7SijvFFdC1ZZsXLAtOpXKyldCy1ICZL2K0d5K8Vx9Wv3dxPDvwlTNq8-AQ6DHTFMyTDdMNlwLlhBzz6hL2GK2z6GKSqVVELqQtEdBTGkFNGZTWlm45th1GzNm2LebM2bvfkS-bl_bFNx5qIdwaePHG85LWVp4U53nEfEj7PWjWpLk3cMN4wy</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Yinguang Li</creator><creator>Guifu Zhang</creator><creator>Doviak, Richard J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20140201</creationdate><title>Ground Clutter Detection Using the Statistical Properties of Signals Received With a Polarimetric Radar</title><author>Yinguang Li ; Guifu Zhang ; Doviak, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-96ac72cf7f4ca336c0a19a901027598ca5a3bfc165dbb44f8c8c44c40dbf02843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Bayes methods</topic><topic>Climatology</topic><topic>Clutter</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Economic models</topic><topic>Exact sciences and technology</topic><topic>Grounds</topic><topic>Information, signal and communications theory</topic><topic>Likelihood ratio</topic><topic>Meteorological radar</topic><topic>Meteorology</topic><topic>Noise</topic><topic>Radar</topic><topic>Radar clutter</topic><topic>radar detection</topic><topic>radar polarimetry</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Telecommunications and information theory</topic><topic>Transaction processing</topic><topic>Vectors</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yinguang Li</creatorcontrib><creatorcontrib>Guifu Zhang</creatorcontrib><creatorcontrib>Doviak, Richard J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yinguang Li</au><au>Guifu Zhang</au><au>Doviak, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ground Clutter Detection Using the Statistical Properties of Signals Received With a Polarimetric Radar</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>62</volume><issue>3</issue><spage>597</spage><epage>606</epage><pages>597-606</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Polarimetric weather radars provide additional measurements that allow better characterization of the targeted medium. Because ground clutter has different polarimetric characteristics from weather echoes, dual-polarization measurements can be used to distinguish one from the other. Ground clutter and weather signals also have different statistical properties which can be utilized to distinguish one from the other. A test statistic, obtained from the generalized likelihood ratio test (GLRT), and a simple Bayesian classifier (SBC), with inputs from the mean and covariance of the received signals, are developed to detect ground clutter in the presence of weather signals. It is found that the test statistic produces false detections caused by narrow-band zero-velocity weather signals while the SBC can effectively neutralize them. This work is aimed at detecting ground clutter based solely on data from each resolution volume. The performances of the test statistic and SBC are shown by applying them to radar data collected with the University of Oklahoma-Polarimetric Radar for Innovation in Meteorology and Engineering.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2013.2293118</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2014-02, Vol.62 (3), p.597-606 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_1504545346 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Bayes methods Climatology Clutter Detection, estimation, filtering, equalization, prediction Economic models Exact sciences and technology Grounds Information, signal and communications theory Likelihood ratio Meteorological radar Meteorology Noise Radar Radar clutter radar detection radar polarimetry Signal and communications theory Signal, noise Statistical analysis Statistics Telecommunications and information theory Transaction processing Vectors Weather |
title | Ground Clutter Detection Using the Statistical Properties of Signals Received With a Polarimetric Radar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ground%20Clutter%20Detection%20Using%20the%20Statistical%20Properties%20of%20Signals%20Received%20With%20a%20Polarimetric%20Radar&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yinguang%20Li&rft.date=2014-02-01&rft.volume=62&rft.issue=3&rft.spage=597&rft.epage=606&rft.pages=597-606&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2013.2293118&rft_dat=%3Cproquest_RIE%3E3237813531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504545346&rft_id=info:pmid/&rft_ieee_id=6675884&rfr_iscdi=true |