Activation of Mg implanted in GaN by multicycle rapid thermal annealing
A long-standing goal of GaN device research has been the development of a reliable, well-controlled process for p-GaN formation by ion implantation. Results to date have indicated an activation of 1% or less using high-temperature rapid thermal annealing (RTA) techniques and coimplantation. Although...
Gespeichert in:
Veröffentlicht in: | Electronics letters 2014-01, Vol.50 (3), p.197-198 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | 3 |
container_start_page | 197 |
container_title | Electronics letters |
container_volume | 50 |
creator | Anderson, T.J Feigelson, B.N Kub, F.J Tadjer, M.J Hobart, K.D Mastro, M.A Hite, J.K Eddy, C.R |
description | A long-standing goal of GaN device research has been the development of a reliable, well-controlled process for p-GaN formation by ion implantation. Results to date have indicated an activation of 1% or less using high-temperature rapid thermal annealing (RTA) techniques and coimplantation. Although Mg is a relatively deep acceptor, this is still much less than the theoretically achievable value (8.2% based on the 160 meV acceptor level). A multicycle RTA process is presented that is capable of achieving up to 8% activation of the Mg-implanted GaN. This approaches the theoretical value, and represents a significant step in GaN device research. |
doi_str_mv | 10.1049/el.2013.3214 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_1504229997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3236699211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5380-3e532f7c666d961b75565fdf09aba100b45d6160c52869600e3e511231745c263</originalsourceid><addsrcrecordid>eNp9kE1rFEEQhhtRcIm55Qc0qODBWav6a7aPMWw2wphcFHJrenp6YkvPh9Ozkf339rDBBAmeCoqnHt56CTlDWCMI_cnHNQPka85QvCAr5BIKjXj7kqwg7wuJWrwmpymFGlCgUCBwRXbnbg73dg5DT4eWfr2joRuj7Wff0NDTnb2m9YF2-zgHd3DR08mOoaHzDz91NlLb997G0N-9Ia9aG5M_fZgn5Pvl9tvFVVHd7L5cnFeFk3wDBfeSs7Z0SqlGK6xLKZVsmxa0rS0C1EI2ChU4yTZKKwCfLxAZx1JIxxQ_IR-O3nEafu19mk0XkvMxR_bDPhmUDLK4ZCKjb_9Bfw77qc_pMgWCMa11mamPR8pNQ0qTb804hc5OB4NglmKNj2Yp1izFZvz9g9QmZ2M72d6F9PeGbRa1XDh55H6H6A__dZptVbHPl4DI4fG_4J_mfT7Ku2fQbfXEPDYt_wOfKZzV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504229997</pqid></control><display><type>article</type><title>Activation of Mg implanted in GaN by multicycle rapid thermal annealing</title><source>Wiley-Blackwell Open Access Titles</source><creator>Anderson, T.J ; Feigelson, B.N ; Kub, F.J ; Tadjer, M.J ; Hobart, K.D ; Mastro, M.A ; Hite, J.K ; Eddy, C.R</creator><creatorcontrib>Anderson, T.J ; Feigelson, B.N ; Kub, F.J ; Tadjer, M.J ; Hobart, K.D ; Mastro, M.A ; Hite, J.K ; Eddy, C.R</creatorcontrib><description>A long-standing goal of GaN device research has been the development of a reliable, well-controlled process for p-GaN formation by ion implantation. Results to date have indicated an activation of 1% or less using high-temperature rapid thermal annealing (RTA) techniques and coimplantation. Although Mg is a relatively deep acceptor, this is still much less than the theoretically achievable value (8.2% based on the 160 meV acceptor level). A multicycle RTA process is presented that is capable of achieving up to 8% activation of the Mg-implanted GaN. This approaches the theoretical value, and represents a significant step in GaN device research.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2013.3214</identifier><identifier>CODEN: ELLEAK</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Activation ; Annealing ; Applied sciences ; deep acceptor ; Devices ; Electronics ; Exact sciences and technology ; gallium compounds ; Gallium nitrides ; GaN:Mg ; III‐V semiconductors ; Ion implantation ; Magnesium ; Medical devices ; Microelectronic fabrication (materials and surfaces technology) ; multicycle rapid thermal annealing ; Organic and inorganic circuits and devices ; rapid thermal annealing ; semiconductor doping ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; semiconductor epitaxial layers ; wide band gap semiconductors</subject><ispartof>Electronics letters, 2014-01, Vol.50 (3), p.197-198</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><rights>2015 INIST-CNRS</rights><rights>Copyright The Institution of Engineering & Technology Jan 30, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5380-3e532f7c666d961b75565fdf09aba100b45d6160c52869600e3e511231745c263</citedby><cites>FETCH-LOGICAL-c5380-3e532f7c666d961b75565fdf09aba100b45d6160c52869600e3e511231745c263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2013.3214$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2013.3214$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2013.3214$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28150454$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, T.J</creatorcontrib><creatorcontrib>Feigelson, B.N</creatorcontrib><creatorcontrib>Kub, F.J</creatorcontrib><creatorcontrib>Tadjer, M.J</creatorcontrib><creatorcontrib>Hobart, K.D</creatorcontrib><creatorcontrib>Mastro, M.A</creatorcontrib><creatorcontrib>Hite, J.K</creatorcontrib><creatorcontrib>Eddy, C.R</creatorcontrib><title>Activation of Mg implanted in GaN by multicycle rapid thermal annealing</title><title>Electronics letters</title><description>A long-standing goal of GaN device research has been the development of a reliable, well-controlled process for p-GaN formation by ion implantation. Results to date have indicated an activation of 1% or less using high-temperature rapid thermal annealing (RTA) techniques and coimplantation. Although Mg is a relatively deep acceptor, this is still much less than the theoretically achievable value (8.2% based on the 160 meV acceptor level). A multicycle RTA process is presented that is capable of achieving up to 8% activation of the Mg-implanted GaN. This approaches the theoretical value, and represents a significant step in GaN device research.</description><subject>Activation</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>deep acceptor</subject><subject>Devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>gallium compounds</subject><subject>Gallium nitrides</subject><subject>GaN:Mg</subject><subject>III‐V semiconductors</subject><subject>Ion implantation</subject><subject>Magnesium</subject><subject>Medical devices</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>multicycle rapid thermal annealing</subject><subject>Organic and inorganic circuits and devices</subject><subject>rapid thermal annealing</subject><subject>semiconductor doping</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>semiconductor epitaxial layers</subject><subject>wide band gap semiconductors</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1rFEEQhhtRcIm55Qc0qODBWav6a7aPMWw2wphcFHJrenp6YkvPh9Ozkf339rDBBAmeCoqnHt56CTlDWCMI_cnHNQPka85QvCAr5BIKjXj7kqwg7wuJWrwmpymFGlCgUCBwRXbnbg73dg5DT4eWfr2joRuj7Wff0NDTnb2m9YF2-zgHd3DR08mOoaHzDz91NlLb997G0N-9Ia9aG5M_fZgn5Pvl9tvFVVHd7L5cnFeFk3wDBfeSs7Z0SqlGK6xLKZVsmxa0rS0C1EI2ChU4yTZKKwCfLxAZx1JIxxQ_IR-O3nEafu19mk0XkvMxR_bDPhmUDLK4ZCKjb_9Bfw77qc_pMgWCMa11mamPR8pNQ0qTb804hc5OB4NglmKNj2Yp1izFZvz9g9QmZ2M72d6F9PeGbRa1XDh55H6H6A__dZptVbHPl4DI4fG_4J_mfT7Ku2fQbfXEPDYt_wOfKZzV</recordid><startdate>20140130</startdate><enddate>20140130</enddate><creator>Anderson, T.J</creator><creator>Feigelson, B.N</creator><creator>Kub, F.J</creator><creator>Tadjer, M.J</creator><creator>Hobart, K.D</creator><creator>Mastro, M.A</creator><creator>Hite, J.K</creator><creator>Eddy, C.R</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><general>John Wiley & Sons, Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140130</creationdate><title>Activation of Mg implanted in GaN by multicycle rapid thermal annealing</title><author>Anderson, T.J ; Feigelson, B.N ; Kub, F.J ; Tadjer, M.J ; Hobart, K.D ; Mastro, M.A ; Hite, J.K ; Eddy, C.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5380-3e532f7c666d961b75565fdf09aba100b45d6160c52869600e3e511231745c263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>deep acceptor</topic><topic>Devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>gallium compounds</topic><topic>Gallium nitrides</topic><topic>GaN:Mg</topic><topic>III‐V semiconductors</topic><topic>Ion implantation</topic><topic>Magnesium</topic><topic>Medical devices</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>multicycle rapid thermal annealing</topic><topic>Organic and inorganic circuits and devices</topic><topic>rapid thermal annealing</topic><topic>semiconductor doping</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>semiconductor epitaxial layers</topic><topic>wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, T.J</creatorcontrib><creatorcontrib>Feigelson, B.N</creatorcontrib><creatorcontrib>Kub, F.J</creatorcontrib><creatorcontrib>Tadjer, M.J</creatorcontrib><creatorcontrib>Hobart, K.D</creatorcontrib><creatorcontrib>Mastro, M.A</creatorcontrib><creatorcontrib>Hite, J.K</creatorcontrib><creatorcontrib>Eddy, C.R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anderson, T.J</au><au>Feigelson, B.N</au><au>Kub, F.J</au><au>Tadjer, M.J</au><au>Hobart, K.D</au><au>Mastro, M.A</au><au>Hite, J.K</au><au>Eddy, C.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of Mg implanted in GaN by multicycle rapid thermal annealing</atitle><jtitle>Electronics letters</jtitle><date>2014-01-30</date><risdate>2014</risdate><volume>50</volume><issue>3</issue><spage>197</spage><epage>198</epage><pages>197-198</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><coden>ELLEAK</coden><abstract>A long-standing goal of GaN device research has been the development of a reliable, well-controlled process for p-GaN formation by ion implantation. Results to date have indicated an activation of 1% or less using high-temperature rapid thermal annealing (RTA) techniques and coimplantation. Although Mg is a relatively deep acceptor, this is still much less than the theoretically achievable value (8.2% based on the 160 meV acceptor level). A multicycle RTA process is presented that is capable of achieving up to 8% activation of the Mg-implanted GaN. This approaches the theoretical value, and represents a significant step in GaN device research.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2013.3214</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0013-5194 |
ispartof | Electronics letters, 2014-01, Vol.50 (3), p.197-198 |
issn | 0013-5194 1350-911X 1350-911X |
language | eng |
recordid | cdi_proquest_journals_1504229997 |
source | Wiley-Blackwell Open Access Titles |
subjects | Activation Annealing Applied sciences deep acceptor Devices Electronics Exact sciences and technology gallium compounds Gallium nitrides GaN:Mg III‐V semiconductors Ion implantation Magnesium Medical devices Microelectronic fabrication (materials and surfaces technology) multicycle rapid thermal annealing Organic and inorganic circuits and devices rapid thermal annealing semiconductor doping Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices semiconductor epitaxial layers wide band gap semiconductors |
title | Activation of Mg implanted in GaN by multicycle rapid thermal annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20Mg%20implanted%20in%20GaN%20by%20multicycle%20rapid%20thermal%20annealing&rft.jtitle=Electronics%20letters&rft.au=Anderson,%20T.J&rft.date=2014-01-30&rft.volume=50&rft.issue=3&rft.spage=197&rft.epage=198&rft.pages=197-198&rft.issn=0013-5194&rft.eissn=1350-911X&rft.coden=ELLEAK&rft_id=info:doi/10.1049/el.2013.3214&rft_dat=%3Cproquest_24P%3E3236699211%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504229997&rft_id=info:pmid/&rfr_iscdi=true |