Activation of Mg implanted in GaN by multicycle rapid thermal annealing

A long-standing goal of GaN device research has been the development of a reliable, well-controlled process for p-GaN formation by ion implantation. Results to date have indicated an activation of 1% or less using high-temperature rapid thermal annealing (RTA) techniques and coimplantation. Although...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2014-01, Vol.50 (3), p.197-198
Hauptverfasser: Anderson, T.J, Feigelson, B.N, Kub, F.J, Tadjer, M.J, Hobart, K.D, Mastro, M.A, Hite, J.K, Eddy, C.R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 3
container_start_page 197
container_title Electronics letters
container_volume 50
creator Anderson, T.J
Feigelson, B.N
Kub, F.J
Tadjer, M.J
Hobart, K.D
Mastro, M.A
Hite, J.K
Eddy, C.R
description A long-standing goal of GaN device research has been the development of a reliable, well-controlled process for p-GaN formation by ion implantation. Results to date have indicated an activation of 1% or less using high-temperature rapid thermal annealing (RTA) techniques and coimplantation. Although Mg is a relatively deep acceptor, this is still much less than the theoretically achievable value (8.2% based on the 160 meV acceptor level). A multicycle RTA process is presented that is capable of achieving up to 8% activation of the Mg-implanted GaN. This approaches the theoretical value, and represents a significant step in GaN device research.
doi_str_mv 10.1049/el.2013.3214
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_1504229997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3236699211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5380-3e532f7c666d961b75565fdf09aba100b45d6160c52869600e3e511231745c263</originalsourceid><addsrcrecordid>eNp9kE1rFEEQhhtRcIm55Qc0qODBWav6a7aPMWw2wphcFHJrenp6YkvPh9Ozkf339rDBBAmeCoqnHt56CTlDWCMI_cnHNQPka85QvCAr5BIKjXj7kqwg7wuJWrwmpymFGlCgUCBwRXbnbg73dg5DT4eWfr2joRuj7Wff0NDTnb2m9YF2-zgHd3DR08mOoaHzDz91NlLb997G0N-9Ia9aG5M_fZgn5Pvl9tvFVVHd7L5cnFeFk3wDBfeSs7Z0SqlGK6xLKZVsmxa0rS0C1EI2ChU4yTZKKwCfLxAZx1JIxxQ_IR-O3nEafu19mk0XkvMxR_bDPhmUDLK4ZCKjb_9Bfw77qc_pMgWCMa11mamPR8pNQ0qTb804hc5OB4NglmKNj2Yp1izFZvz9g9QmZ2M72d6F9PeGbRa1XDh55H6H6A__dZptVbHPl4DI4fG_4J_mfT7Ku2fQbfXEPDYt_wOfKZzV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504229997</pqid></control><display><type>article</type><title>Activation of Mg implanted in GaN by multicycle rapid thermal annealing</title><source>Wiley-Blackwell Open Access Titles</source><creator>Anderson, T.J ; Feigelson, B.N ; Kub, F.J ; Tadjer, M.J ; Hobart, K.D ; Mastro, M.A ; Hite, J.K ; Eddy, C.R</creator><creatorcontrib>Anderson, T.J ; Feigelson, B.N ; Kub, F.J ; Tadjer, M.J ; Hobart, K.D ; Mastro, M.A ; Hite, J.K ; Eddy, C.R</creatorcontrib><description>A long-standing goal of GaN device research has been the development of a reliable, well-controlled process for p-GaN formation by ion implantation. Results to date have indicated an activation of 1% or less using high-temperature rapid thermal annealing (RTA) techniques and coimplantation. Although Mg is a relatively deep acceptor, this is still much less than the theoretically achievable value (8.2% based on the 160 meV acceptor level). A multicycle RTA process is presented that is capable of achieving up to 8% activation of the Mg-implanted GaN. This approaches the theoretical value, and represents a significant step in GaN device research.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2013.3214</identifier><identifier>CODEN: ELLEAK</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Activation ; Annealing ; Applied sciences ; deep acceptor ; Devices ; Electronics ; Exact sciences and technology ; gallium compounds ; Gallium nitrides ; GaN:Mg ; III‐V semiconductors ; Ion implantation ; Magnesium ; Medical devices ; Microelectronic fabrication (materials and surfaces technology) ; multicycle rapid thermal annealing ; Organic and inorganic circuits and devices ; rapid thermal annealing ; semiconductor doping ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; semiconductor epitaxial layers ; wide band gap semiconductors</subject><ispartof>Electronics letters, 2014-01, Vol.50 (3), p.197-198</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><rights>2015 INIST-CNRS</rights><rights>Copyright The Institution of Engineering &amp; Technology Jan 30, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5380-3e532f7c666d961b75565fdf09aba100b45d6160c52869600e3e511231745c263</citedby><cites>FETCH-LOGICAL-c5380-3e532f7c666d961b75565fdf09aba100b45d6160c52869600e3e511231745c263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2013.3214$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2013.3214$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2013.3214$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28150454$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, T.J</creatorcontrib><creatorcontrib>Feigelson, B.N</creatorcontrib><creatorcontrib>Kub, F.J</creatorcontrib><creatorcontrib>Tadjer, M.J</creatorcontrib><creatorcontrib>Hobart, K.D</creatorcontrib><creatorcontrib>Mastro, M.A</creatorcontrib><creatorcontrib>Hite, J.K</creatorcontrib><creatorcontrib>Eddy, C.R</creatorcontrib><title>Activation of Mg implanted in GaN by multicycle rapid thermal annealing</title><title>Electronics letters</title><description>A long-standing goal of GaN device research has been the development of a reliable, well-controlled process for p-GaN formation by ion implantation. Results to date have indicated an activation of 1% or less using high-temperature rapid thermal annealing (RTA) techniques and coimplantation. Although Mg is a relatively deep acceptor, this is still much less than the theoretically achievable value (8.2% based on the 160 meV acceptor level). A multicycle RTA process is presented that is capable of achieving up to 8% activation of the Mg-implanted GaN. This approaches the theoretical value, and represents a significant step in GaN device research.</description><subject>Activation</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>deep acceptor</subject><subject>Devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>gallium compounds</subject><subject>Gallium nitrides</subject><subject>GaN:Mg</subject><subject>III‐V semiconductors</subject><subject>Ion implantation</subject><subject>Magnesium</subject><subject>Medical devices</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>multicycle rapid thermal annealing</subject><subject>Organic and inorganic circuits and devices</subject><subject>rapid thermal annealing</subject><subject>semiconductor doping</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>semiconductor epitaxial layers</subject><subject>wide band gap semiconductors</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1rFEEQhhtRcIm55Qc0qODBWav6a7aPMWw2wphcFHJrenp6YkvPh9Ozkf339rDBBAmeCoqnHt56CTlDWCMI_cnHNQPka85QvCAr5BIKjXj7kqwg7wuJWrwmpymFGlCgUCBwRXbnbg73dg5DT4eWfr2joRuj7Wff0NDTnb2m9YF2-zgHd3DR08mOoaHzDz91NlLb997G0N-9Ia9aG5M_fZgn5Pvl9tvFVVHd7L5cnFeFk3wDBfeSs7Z0SqlGK6xLKZVsmxa0rS0C1EI2ChU4yTZKKwCfLxAZx1JIxxQ_IR-O3nEafu19mk0XkvMxR_bDPhmUDLK4ZCKjb_9Bfw77qc_pMgWCMa11mamPR8pNQ0qTb804hc5OB4NglmKNj2Yp1izFZvz9g9QmZ2M72d6F9PeGbRa1XDh55H6H6A__dZptVbHPl4DI4fG_4J_mfT7Ku2fQbfXEPDYt_wOfKZzV</recordid><startdate>20140130</startdate><enddate>20140130</enddate><creator>Anderson, T.J</creator><creator>Feigelson, B.N</creator><creator>Kub, F.J</creator><creator>Tadjer, M.J</creator><creator>Hobart, K.D</creator><creator>Mastro, M.A</creator><creator>Hite, J.K</creator><creator>Eddy, C.R</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><general>John Wiley &amp; Sons, Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140130</creationdate><title>Activation of Mg implanted in GaN by multicycle rapid thermal annealing</title><author>Anderson, T.J ; Feigelson, B.N ; Kub, F.J ; Tadjer, M.J ; Hobart, K.D ; Mastro, M.A ; Hite, J.K ; Eddy, C.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5380-3e532f7c666d961b75565fdf09aba100b45d6160c52869600e3e511231745c263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>deep acceptor</topic><topic>Devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>gallium compounds</topic><topic>Gallium nitrides</topic><topic>GaN:Mg</topic><topic>III‐V semiconductors</topic><topic>Ion implantation</topic><topic>Magnesium</topic><topic>Medical devices</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>multicycle rapid thermal annealing</topic><topic>Organic and inorganic circuits and devices</topic><topic>rapid thermal annealing</topic><topic>semiconductor doping</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>semiconductor epitaxial layers</topic><topic>wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, T.J</creatorcontrib><creatorcontrib>Feigelson, B.N</creatorcontrib><creatorcontrib>Kub, F.J</creatorcontrib><creatorcontrib>Tadjer, M.J</creatorcontrib><creatorcontrib>Hobart, K.D</creatorcontrib><creatorcontrib>Mastro, M.A</creatorcontrib><creatorcontrib>Hite, J.K</creatorcontrib><creatorcontrib>Eddy, C.R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anderson, T.J</au><au>Feigelson, B.N</au><au>Kub, F.J</au><au>Tadjer, M.J</au><au>Hobart, K.D</au><au>Mastro, M.A</au><au>Hite, J.K</au><au>Eddy, C.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of Mg implanted in GaN by multicycle rapid thermal annealing</atitle><jtitle>Electronics letters</jtitle><date>2014-01-30</date><risdate>2014</risdate><volume>50</volume><issue>3</issue><spage>197</spage><epage>198</epage><pages>197-198</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><coden>ELLEAK</coden><abstract>A long-standing goal of GaN device research has been the development of a reliable, well-controlled process for p-GaN formation by ion implantation. Results to date have indicated an activation of 1% or less using high-temperature rapid thermal annealing (RTA) techniques and coimplantation. Although Mg is a relatively deep acceptor, this is still much less than the theoretically achievable value (8.2% based on the 160 meV acceptor level). A multicycle RTA process is presented that is capable of achieving up to 8% activation of the Mg-implanted GaN. This approaches the theoretical value, and represents a significant step in GaN device research.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2013.3214</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0013-5194
ispartof Electronics letters, 2014-01, Vol.50 (3), p.197-198
issn 0013-5194
1350-911X
1350-911X
language eng
recordid cdi_proquest_journals_1504229997
source Wiley-Blackwell Open Access Titles
subjects Activation
Annealing
Applied sciences
deep acceptor
Devices
Electronics
Exact sciences and technology
gallium compounds
Gallium nitrides
GaN:Mg
III‐V semiconductors
Ion implantation
Magnesium
Medical devices
Microelectronic fabrication (materials and surfaces technology)
multicycle rapid thermal annealing
Organic and inorganic circuits and devices
rapid thermal annealing
semiconductor doping
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
semiconductor epitaxial layers
wide band gap semiconductors
title Activation of Mg implanted in GaN by multicycle rapid thermal annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20Mg%20implanted%20in%20GaN%20by%20multicycle%20rapid%20thermal%20annealing&rft.jtitle=Electronics%20letters&rft.au=Anderson,%20T.J&rft.date=2014-01-30&rft.volume=50&rft.issue=3&rft.spage=197&rft.epage=198&rft.pages=197-198&rft.issn=0013-5194&rft.eissn=1350-911X&rft.coden=ELLEAK&rft_id=info:doi/10.1049/el.2013.3214&rft_dat=%3Cproquest_24P%3E3236699211%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504229997&rft_id=info:pmid/&rfr_iscdi=true