Motor Learning Is Optimally Tuned to the Properties of Motor Noise

In motor learning, our brain uses movement errors to adjust planning of future movements. This process has traditionally been studied by examining how motor planning is adjusted in response to visuomotor or dynamic perturbations. Here, I show that the learning strategy can be better identified from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2009-08, Vol.63 (3), p.406-417
1. Verfasser: van Beers, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 417
container_issue 3
container_start_page 406
container_title Neuron (Cambridge, Mass.)
container_volume 63
creator van Beers, Robert J.
description In motor learning, our brain uses movement errors to adjust planning of future movements. This process has traditionally been studied by examining how motor planning is adjusted in response to visuomotor or dynamic perturbations. Here, I show that the learning strategy can be better identified from the statistics of movements made in the absence of perturbations. The strategy identified this way differs from the learning mechanism assumed in mainstream models for motor learning. Crucial for this strategy is that motor noise arises partly centrally, in movement planning, and partly peripherally, in movement execution. Corrections are made by modification of central planning signals from the previous movement, which include the effects of planning but not execution noise. The size of the corrections is such that the movement variability is minimized. This physiologically plausible strategy is optimally tuned to the properties of motor noise, and likely underlies learning in many motor tasks.
doi_str_mv 10.1016/j.neuron.2009.06.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1503776772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627309005169</els_id><sourcerecordid>3235494641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-13b990d677729267f9452adc8748922d51948129210d3c640cc64ef8e378b0673</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqXwBghZ4pywdhI7viBBxZ9UKIdyttJkA4naONgOUt8eV6nEjcvuYWdmNR8hlwxiBkzctHGHgzVdzAFUDCIGnh2RKQMlo5QpdUymkCsRCS6TCTlzrgVgaabYKZkwJaQCqabk_tV4Y-kCC9s13Sd9cXTZ-2ZbbDY7uho6rKg31H8hfbemR-sbdNTUdLS9mcbhOTmpi43Di8OekY_Hh9X8OVosn17md4uozAB8xJK1UlAJKSVXXMhapRkvqjKXaa44rzKm0pyFE4MqKUUKZRhY55jIfA1CJjNyPeb21nwP6LxuzWC78FKzDBIpQzQPqnRUldY4Z7HWvQ117E4z0HtwutUjOL0Hp0HoAC7Yrg7hw3qL1Z_pQCoIbkcBhoo_DVrtyga7EqvGYul1ZZr_P_wCG45-Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503776772</pqid></control><display><type>article</type><title>Motor Learning Is Optimally Tuned to the Properties of Motor Noise</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>van Beers, Robert J.</creator><creatorcontrib>van Beers, Robert J.</creatorcontrib><description>In motor learning, our brain uses movement errors to adjust planning of future movements. This process has traditionally been studied by examining how motor planning is adjusted in response to visuomotor or dynamic perturbations. Here, I show that the learning strategy can be better identified from the statistics of movements made in the absence of perturbations. The strategy identified this way differs from the learning mechanism assumed in mainstream models for motor learning. Crucial for this strategy is that motor noise arises partly centrally, in movement planning, and partly peripherally, in movement execution. Corrections are made by modification of central planning signals from the previous movement, which include the effects of planning but not execution noise. The size of the corrections is such that the movement variability is minimized. This physiologically plausible strategy is optimally tuned to the properties of motor noise, and likely underlies learning in many motor tasks.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2009.06.025</identifier><identifier>PMID: 19679079</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptation, Physiological ; Adolescent ; Adult ; Female ; Humans ; Learning - physiology ; Male ; Models, Biological ; Monte Carlo Method ; Motors ; Movement - physiology ; Noise ; Observation - methods ; Parameter estimation ; Photic Stimulation ; Psychomotor Performance - physiology ; Reaction Time - physiology ; SIGNALING ; SYSBIO ; SYSNEURO ; Task Performance and Analysis ; Visual Perception - physiology ; Young Adult</subject><ispartof>Neuron (Cambridge, Mass.), 2009-08, Vol.63 (3), p.406-417</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Aug 13, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-13b990d677729267f9452adc8748922d51948129210d3c640cc64ef8e378b0673</citedby><cites>FETCH-LOGICAL-c500t-13b990d677729267f9452adc8748922d51948129210d3c640cc64ef8e378b0673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2009.06.025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19679079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Beers, Robert J.</creatorcontrib><title>Motor Learning Is Optimally Tuned to the Properties of Motor Noise</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>In motor learning, our brain uses movement errors to adjust planning of future movements. This process has traditionally been studied by examining how motor planning is adjusted in response to visuomotor or dynamic perturbations. Here, I show that the learning strategy can be better identified from the statistics of movements made in the absence of perturbations. The strategy identified this way differs from the learning mechanism assumed in mainstream models for motor learning. Crucial for this strategy is that motor noise arises partly centrally, in movement planning, and partly peripherally, in movement execution. Corrections are made by modification of central planning signals from the previous movement, which include the effects of planning but not execution noise. The size of the corrections is such that the movement variability is minimized. This physiologically plausible strategy is optimally tuned to the properties of motor noise, and likely underlies learning in many motor tasks.</description><subject>Adaptation, Physiological</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Female</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>Motors</subject><subject>Movement - physiology</subject><subject>Noise</subject><subject>Observation - methods</subject><subject>Parameter estimation</subject><subject>Photic Stimulation</subject><subject>Psychomotor Performance - physiology</subject><subject>Reaction Time - physiology</subject><subject>SIGNALING</subject><subject>SYSBIO</subject><subject>SYSNEURO</subject><subject>Task Performance and Analysis</subject><subject>Visual Perception - physiology</subject><subject>Young Adult</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1OwzAQhC0EoqXwBghZ4pywdhI7viBBxZ9UKIdyttJkA4naONgOUt8eV6nEjcvuYWdmNR8hlwxiBkzctHGHgzVdzAFUDCIGnh2RKQMlo5QpdUymkCsRCS6TCTlzrgVgaabYKZkwJaQCqabk_tV4Y-kCC9s13Sd9cXTZ-2ZbbDY7uho6rKg31H8hfbemR-sbdNTUdLS9mcbhOTmpi43Di8OekY_Hh9X8OVosn17md4uozAB8xJK1UlAJKSVXXMhapRkvqjKXaa44rzKm0pyFE4MqKUUKZRhY55jIfA1CJjNyPeb21nwP6LxuzWC78FKzDBIpQzQPqnRUldY4Z7HWvQ117E4z0HtwutUjOL0Hp0HoAC7Yrg7hw3qL1Z_pQCoIbkcBhoo_DVrtyga7EqvGYul1ZZr_P_wCG45-Pg</recordid><startdate>20090813</startdate><enddate>20090813</enddate><creator>van Beers, Robert J.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20090813</creationdate><title>Motor Learning Is Optimally Tuned to the Properties of Motor Noise</title><author>van Beers, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-13b990d677729267f9452adc8748922d51948129210d3c640cc64ef8e378b0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptation, Physiological</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Female</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>Motors</topic><topic>Movement - physiology</topic><topic>Noise</topic><topic>Observation - methods</topic><topic>Parameter estimation</topic><topic>Photic Stimulation</topic><topic>Psychomotor Performance - physiology</topic><topic>Reaction Time - physiology</topic><topic>SIGNALING</topic><topic>SYSBIO</topic><topic>SYSNEURO</topic><topic>Task Performance and Analysis</topic><topic>Visual Perception - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Beers, Robert J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Beers, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motor Learning Is Optimally Tuned to the Properties of Motor Noise</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2009-08-13</date><risdate>2009</risdate><volume>63</volume><issue>3</issue><spage>406</spage><epage>417</epage><pages>406-417</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>In motor learning, our brain uses movement errors to adjust planning of future movements. This process has traditionally been studied by examining how motor planning is adjusted in response to visuomotor or dynamic perturbations. Here, I show that the learning strategy can be better identified from the statistics of movements made in the absence of perturbations. The strategy identified this way differs from the learning mechanism assumed in mainstream models for motor learning. Crucial for this strategy is that motor noise arises partly centrally, in movement planning, and partly peripherally, in movement execution. Corrections are made by modification of central planning signals from the previous movement, which include the effects of planning but not execution noise. The size of the corrections is such that the movement variability is minimized. This physiologically plausible strategy is optimally tuned to the properties of motor noise, and likely underlies learning in many motor tasks.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19679079</pmid><doi>10.1016/j.neuron.2009.06.025</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2009-08, Vol.63 (3), p.406-417
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_journals_1503776772
source MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Adaptation, Physiological
Adolescent
Adult
Female
Humans
Learning - physiology
Male
Models, Biological
Monte Carlo Method
Motors
Movement - physiology
Noise
Observation - methods
Parameter estimation
Photic Stimulation
Psychomotor Performance - physiology
Reaction Time - physiology
SIGNALING
SYSBIO
SYSNEURO
Task Performance and Analysis
Visual Perception - physiology
Young Adult
title Motor Learning Is Optimally Tuned to the Properties of Motor Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motor%20Learning%20Is%20Optimally%20Tuned%20to%20the%20Properties%20of%20Motor%20Noise&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=van%20Beers,%20Robert%20J.&rft.date=2009-08-13&rft.volume=63&rft.issue=3&rft.spage=406&rft.epage=417&rft.pages=406-417&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2009.06.025&rft_dat=%3Cproquest_cross%3E3235494641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503776772&rft_id=info:pmid/19679079&rft_els_id=S0896627309005169&rfr_iscdi=true