Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8
Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-02, Vol.111 (7), p.2698-2703 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2703 |
---|---|
container_issue | 7 |
container_start_page | 2698 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Ahn, G-One Seita, Jun Hong, Beom-Ju Kim, Young-Eun Bok, Seoyeon Lee, Chan-Ju Kim, Kwang Soon Lee, Jerry C. Leeper, Nicholas J. Cooke, John P. Kim, Hak Jae Kim, Il Han Weissman, Irving L. Brownb, J. Martin |
description | Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel–Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1–activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects. |
doi_str_mv | 10.1073/pnas.1320243111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1501609089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23768950</jstor_id><sourcerecordid>23768950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-7fd77741c49c36e4c7b174ac5b144be0ebb81023ac305172eed0b9162ff42b6b3</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEokvhzAmwxKUc0s7YThxfkKqq21aqxKEtV8txnKxX2TjYScWe-OskbNkWLr3YsuabpzfjlyTvEY4RBDvpOx2PkVGgnCHii2SBIDHNuYSXyQKAirTglB8kb2JcA4DMCnidHFDOpcigWCS_boPuogmuH5zvdEu0Gdy9nh_E12S17f1Pp1PXVaNxZWtJPQE-pEiOLq-WKX4hriObrW29q4ixbRtJH_zGDzYS3TXON7az0UUyrIIfmxX5fn6xnCoVuUGA0-Jt8qrWbbTvHu7D5G55fnt2mV5_u7g6O71OTU7pkIq6EkJwNFwalltuRImCa5OVyHlpwZZlgUCZNgwyFNTaCkqJOa1rTsu8ZIfJ151uP5YbWxnbDUG3qg9uo8NWee3Uv5XOrVTj7xWTjEqQk8DRg0DwP0YbB7VxcR5Yd9aPUWEBDDlykT-PZkgZzdl0Po8C5AVjDCb083_o2o9h-rI_FOYgoZhtnuwoE3yMwdb7ERHUHBk1R0Y9Rmbq-Ph0M3v-b0aeAHPnXg5RCUVzOQMfdsA6TtF4FGAiL2Q2O_-0q9faK90EF9XdDZ0tA7KJkOw3CvnYqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501609089</pqid></control><display><type>article</type><title>Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ahn, G-One ; Seita, Jun ; Hong, Beom-Ju ; Kim, Young-Eun ; Bok, Seoyeon ; Lee, Chan-Ju ; Kim, Kwang Soon ; Lee, Jerry C. ; Leeper, Nicholas J. ; Cooke, John P. ; Kim, Hak Jae ; Kim, Il Han ; Weissman, Irving L. ; Brownb, J. Martin</creator><creatorcontrib>Ahn, G-One ; Seita, Jun ; Hong, Beom-Ju ; Kim, Young-Eun ; Bok, Seoyeon ; Lee, Chan-Ju ; Kim, Kwang Soon ; Lee, Jerry C. ; Leeper, Nicholas J. ; Cooke, John P. ; Kim, Hak Jae ; Kim, Il Han ; Weissman, Irving L. ; Brownb, J. Martin</creatorcontrib><description>Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel–Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1–activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1320243111</identifier><identifier>PMID: 24497508</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Analysis of Variance ; Angiogenesis ; animal models ; Animals ; Biological Sciences ; blood flow ; Blood vessels ; Blotting, Western ; Bone marrow ; Calgranulin A - metabolism ; Collagen ; Crosses, Genetic ; DNA Primers - genetics ; Drug Combinations ; Endothelial cells ; Enzyme-Linked Immunosorbent Assay ; erythema ; Flow Cytometry ; genes ; Hindlimb - blood supply ; humans ; Hypoxia ; hypoxia-inducible factor 1 ; Hypoxia-Inducible Factor 1 - metabolism ; Ischemia ; Ischemia - physiopathology ; knockout mutants ; Laminin ; Macrophages ; Mice ; Mice, Transgenic ; Monocytes ; Mutation ; Myeloid cells ; Myeloid Cells - metabolism ; Neovascularization, Physiologic - physiology ; Polymerase Chain Reaction ; Proteoglycans ; Rodents ; transcription (genetics) ; transcriptional activation ; Transcriptional Activation - genetics ; Transcriptional Activation - physiology ; vascular diseases ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; vascular endothelial growth factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (7), p.2698-2703</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 18, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-7fd77741c49c36e4c7b174ac5b144be0ebb81023ac305172eed0b9162ff42b6b3</citedby><cites>FETCH-LOGICAL-c622t-7fd77741c49c36e4c7b174ac5b144be0ebb81023ac305172eed0b9162ff42b6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23768950$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23768950$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24497508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, G-One</creatorcontrib><creatorcontrib>Seita, Jun</creatorcontrib><creatorcontrib>Hong, Beom-Ju</creatorcontrib><creatorcontrib>Kim, Young-Eun</creatorcontrib><creatorcontrib>Bok, Seoyeon</creatorcontrib><creatorcontrib>Lee, Chan-Ju</creatorcontrib><creatorcontrib>Kim, Kwang Soon</creatorcontrib><creatorcontrib>Lee, Jerry C.</creatorcontrib><creatorcontrib>Leeper, Nicholas J.</creatorcontrib><creatorcontrib>Cooke, John P.</creatorcontrib><creatorcontrib>Kim, Hak Jae</creatorcontrib><creatorcontrib>Kim, Il Han</creatorcontrib><creatorcontrib>Weissman, Irving L.</creatorcontrib><creatorcontrib>Brownb, J. Martin</creatorcontrib><title>Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel–Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1–activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.</description><subject>Analysis of Variance</subject><subject>Angiogenesis</subject><subject>animal models</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>blood flow</subject><subject>Blood vessels</subject><subject>Blotting, Western</subject><subject>Bone marrow</subject><subject>Calgranulin A - metabolism</subject><subject>Collagen</subject><subject>Crosses, Genetic</subject><subject>DNA Primers - genetics</subject><subject>Drug Combinations</subject><subject>Endothelial cells</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>erythema</subject><subject>Flow Cytometry</subject><subject>genes</subject><subject>Hindlimb - blood supply</subject><subject>humans</subject><subject>Hypoxia</subject><subject>hypoxia-inducible factor 1</subject><subject>Hypoxia-Inducible Factor 1 - metabolism</subject><subject>Ischemia</subject><subject>Ischemia - physiopathology</subject><subject>knockout mutants</subject><subject>Laminin</subject><subject>Macrophages</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Monocytes</subject><subject>Mutation</subject><subject>Myeloid cells</subject><subject>Myeloid Cells - metabolism</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Polymerase Chain Reaction</subject><subject>Proteoglycans</subject><subject>Rodents</subject><subject>transcription (genetics)</subject><subject>transcriptional activation</subject><subject>Transcriptional Activation - genetics</subject><subject>Transcriptional Activation - physiology</subject><subject>vascular diseases</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>vascular endothelial growth factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhSMEokvhzAmwxKUc0s7YThxfkKqq21aqxKEtV8txnKxX2TjYScWe-OskbNkWLr3YsuabpzfjlyTvEY4RBDvpOx2PkVGgnCHii2SBIDHNuYSXyQKAirTglB8kb2JcA4DMCnidHFDOpcigWCS_boPuogmuH5zvdEu0Gdy9nh_E12S17f1Pp1PXVaNxZWtJPQE-pEiOLq-WKX4hriObrW29q4ixbRtJH_zGDzYS3TXON7az0UUyrIIfmxX5fn6xnCoVuUGA0-Jt8qrWbbTvHu7D5G55fnt2mV5_u7g6O71OTU7pkIq6EkJwNFwalltuRImCa5OVyHlpwZZlgUCZNgwyFNTaCkqJOa1rTsu8ZIfJ151uP5YbWxnbDUG3qg9uo8NWee3Uv5XOrVTj7xWTjEqQk8DRg0DwP0YbB7VxcR5Yd9aPUWEBDDlykT-PZkgZzdl0Po8C5AVjDCb083_o2o9h-rI_FOYgoZhtnuwoE3yMwdb7ERHUHBk1R0Y9Rmbq-Ph0M3v-b0aeAHPnXg5RCUVzOQMfdsA6TtF4FGAiL2Q2O_-0q9faK90EF9XdDZ0tA7KJkOw3CvnYqA</recordid><startdate>20140218</startdate><enddate>20140218</enddate><creator>Ahn, G-One</creator><creator>Seita, Jun</creator><creator>Hong, Beom-Ju</creator><creator>Kim, Young-Eun</creator><creator>Bok, Seoyeon</creator><creator>Lee, Chan-Ju</creator><creator>Kim, Kwang Soon</creator><creator>Lee, Jerry C.</creator><creator>Leeper, Nicholas J.</creator><creator>Cooke, John P.</creator><creator>Kim, Hak Jae</creator><creator>Kim, Il Han</creator><creator>Weissman, Irving L.</creator><creator>Brownb, J. Martin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140218</creationdate><title>Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8</title><author>Ahn, G-One ; Seita, Jun ; Hong, Beom-Ju ; Kim, Young-Eun ; Bok, Seoyeon ; Lee, Chan-Ju ; Kim, Kwang Soon ; Lee, Jerry C. ; Leeper, Nicholas J. ; Cooke, John P. ; Kim, Hak Jae ; Kim, Il Han ; Weissman, Irving L. ; Brownb, J. Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-7fd77741c49c36e4c7b174ac5b144be0ebb81023ac305172eed0b9162ff42b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis of Variance</topic><topic>Angiogenesis</topic><topic>animal models</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>blood flow</topic><topic>Blood vessels</topic><topic>Blotting, Western</topic><topic>Bone marrow</topic><topic>Calgranulin A - metabolism</topic><topic>Collagen</topic><topic>Crosses, Genetic</topic><topic>DNA Primers - genetics</topic><topic>Drug Combinations</topic><topic>Endothelial cells</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>erythema</topic><topic>Flow Cytometry</topic><topic>genes</topic><topic>Hindlimb - blood supply</topic><topic>humans</topic><topic>Hypoxia</topic><topic>hypoxia-inducible factor 1</topic><topic>Hypoxia-Inducible Factor 1 - metabolism</topic><topic>Ischemia</topic><topic>Ischemia - physiopathology</topic><topic>knockout mutants</topic><topic>Laminin</topic><topic>Macrophages</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Monocytes</topic><topic>Mutation</topic><topic>Myeloid cells</topic><topic>Myeloid Cells - metabolism</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Polymerase Chain Reaction</topic><topic>Proteoglycans</topic><topic>Rodents</topic><topic>transcription (genetics)</topic><topic>transcriptional activation</topic><topic>Transcriptional Activation - genetics</topic><topic>Transcriptional Activation - physiology</topic><topic>vascular diseases</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>vascular endothelial growth factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, G-One</creatorcontrib><creatorcontrib>Seita, Jun</creatorcontrib><creatorcontrib>Hong, Beom-Ju</creatorcontrib><creatorcontrib>Kim, Young-Eun</creatorcontrib><creatorcontrib>Bok, Seoyeon</creatorcontrib><creatorcontrib>Lee, Chan-Ju</creatorcontrib><creatorcontrib>Kim, Kwang Soon</creatorcontrib><creatorcontrib>Lee, Jerry C.</creatorcontrib><creatorcontrib>Leeper, Nicholas J.</creatorcontrib><creatorcontrib>Cooke, John P.</creatorcontrib><creatorcontrib>Kim, Hak Jae</creatorcontrib><creatorcontrib>Kim, Il Han</creatorcontrib><creatorcontrib>Weissman, Irving L.</creatorcontrib><creatorcontrib>Brownb, J. Martin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, G-One</au><au>Seita, Jun</au><au>Hong, Beom-Ju</au><au>Kim, Young-Eun</au><au>Bok, Seoyeon</au><au>Lee, Chan-Ju</au><au>Kim, Kwang Soon</au><au>Lee, Jerry C.</au><au>Leeper, Nicholas J.</au><au>Cooke, John P.</au><au>Kim, Hak Jae</au><au>Kim, Il Han</au><au>Weissman, Irving L.</au><au>Brownb, J. Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-02-18</date><risdate>2014</risdate><volume>111</volume><issue>7</issue><spage>2698</spage><epage>2703</epage><pages>2698-2703</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel–Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1–activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24497508</pmid><doi>10.1073/pnas.1320243111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (7), p.2698-2703 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1501609089 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Analysis of Variance Angiogenesis animal models Animals Biological Sciences blood flow Blood vessels Blotting, Western Bone marrow Calgranulin A - metabolism Collagen Crosses, Genetic DNA Primers - genetics Drug Combinations Endothelial cells Enzyme-Linked Immunosorbent Assay erythema Flow Cytometry genes Hindlimb - blood supply humans Hypoxia hypoxia-inducible factor 1 Hypoxia-Inducible Factor 1 - metabolism Ischemia Ischemia - physiopathology knockout mutants Laminin Macrophages Mice Mice, Transgenic Monocytes Mutation Myeloid cells Myeloid Cells - metabolism Neovascularization, Physiologic - physiology Polymerase Chain Reaction Proteoglycans Rodents transcription (genetics) transcriptional activation Transcriptional Activation - genetics Transcriptional Activation - physiology vascular diseases Vascular endothelial growth factor Vascular Endothelial Growth Factor A - metabolism vascular endothelial growth factors |
title | Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20activation%20of%20hypoxia-inducible%20factor-1%20(HIF-1)%20in%20myeloid%20cells%20promotes%20angiogenesis%20through%20VEGF%20and%20S100A8&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ahn,%20G-One&rft.date=2014-02-18&rft.volume=111&rft.issue=7&rft.spage=2698&rft.epage=2703&rft.pages=2698-2703&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1320243111&rft_dat=%3Cjstor_proqu%3E23768950%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1501609089&rft_id=info:pmid/24497508&rft_jstor_id=23768950&rfr_iscdi=true |