Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8

Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-02, Vol.111 (7), p.2698-2703
Hauptverfasser: Ahn, G-One, Seita, Jun, Hong, Beom-Ju, Kim, Young-Eun, Bok, Seoyeon, Lee, Chan-Ju, Kim, Kwang Soon, Lee, Jerry C., Leeper, Nicholas J., Cooke, John P., Kim, Hak Jae, Kim, Il Han, Weissman, Irving L., Brownb, J. Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2703
container_issue 7
container_start_page 2698
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Ahn, G-One
Seita, Jun
Hong, Beom-Ju
Kim, Young-Eun
Bok, Seoyeon
Lee, Chan-Ju
Kim, Kwang Soon
Lee, Jerry C.
Leeper, Nicholas J.
Cooke, John P.
Kim, Hak Jae
Kim, Il Han
Weissman, Irving L.
Brownb, J. Martin
description Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel–Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1–activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.
doi_str_mv 10.1073/pnas.1320243111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1501609089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23768950</jstor_id><sourcerecordid>23768950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-7fd77741c49c36e4c7b174ac5b144be0ebb81023ac305172eed0b9162ff42b6b3</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEokvhzAmwxKUc0s7YThxfkKqq21aqxKEtV8txnKxX2TjYScWe-OskbNkWLr3YsuabpzfjlyTvEY4RBDvpOx2PkVGgnCHii2SBIDHNuYSXyQKAirTglB8kb2JcA4DMCnidHFDOpcigWCS_boPuogmuH5zvdEu0Gdy9nh_E12S17f1Pp1PXVaNxZWtJPQE-pEiOLq-WKX4hriObrW29q4ixbRtJH_zGDzYS3TXON7az0UUyrIIfmxX5fn6xnCoVuUGA0-Jt8qrWbbTvHu7D5G55fnt2mV5_u7g6O71OTU7pkIq6EkJwNFwalltuRImCa5OVyHlpwZZlgUCZNgwyFNTaCkqJOa1rTsu8ZIfJ151uP5YbWxnbDUG3qg9uo8NWee3Uv5XOrVTj7xWTjEqQk8DRg0DwP0YbB7VxcR5Yd9aPUWEBDDlykT-PZkgZzdl0Po8C5AVjDCb083_o2o9h-rI_FOYgoZhtnuwoE3yMwdb7ERHUHBk1R0Y9Rmbq-Ph0M3v-b0aeAHPnXg5RCUVzOQMfdsA6TtF4FGAiL2Q2O_-0q9faK90EF9XdDZ0tA7KJkOw3CvnYqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501609089</pqid></control><display><type>article</type><title>Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ahn, G-One ; Seita, Jun ; Hong, Beom-Ju ; Kim, Young-Eun ; Bok, Seoyeon ; Lee, Chan-Ju ; Kim, Kwang Soon ; Lee, Jerry C. ; Leeper, Nicholas J. ; Cooke, John P. ; Kim, Hak Jae ; Kim, Il Han ; Weissman, Irving L. ; Brownb, J. Martin</creator><creatorcontrib>Ahn, G-One ; Seita, Jun ; Hong, Beom-Ju ; Kim, Young-Eun ; Bok, Seoyeon ; Lee, Chan-Ju ; Kim, Kwang Soon ; Lee, Jerry C. ; Leeper, Nicholas J. ; Cooke, John P. ; Kim, Hak Jae ; Kim, Il Han ; Weissman, Irving L. ; Brownb, J. Martin</creatorcontrib><description>Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel–Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1–activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1320243111</identifier><identifier>PMID: 24497508</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Analysis of Variance ; Angiogenesis ; animal models ; Animals ; Biological Sciences ; blood flow ; Blood vessels ; Blotting, Western ; Bone marrow ; Calgranulin A - metabolism ; Collagen ; Crosses, Genetic ; DNA Primers - genetics ; Drug Combinations ; Endothelial cells ; Enzyme-Linked Immunosorbent Assay ; erythema ; Flow Cytometry ; genes ; Hindlimb - blood supply ; humans ; Hypoxia ; hypoxia-inducible factor 1 ; Hypoxia-Inducible Factor 1 - metabolism ; Ischemia ; Ischemia - physiopathology ; knockout mutants ; Laminin ; Macrophages ; Mice ; Mice, Transgenic ; Monocytes ; Mutation ; Myeloid cells ; Myeloid Cells - metabolism ; Neovascularization, Physiologic - physiology ; Polymerase Chain Reaction ; Proteoglycans ; Rodents ; transcription (genetics) ; transcriptional activation ; Transcriptional Activation - genetics ; Transcriptional Activation - physiology ; vascular diseases ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; vascular endothelial growth factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (7), p.2698-2703</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 18, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-7fd77741c49c36e4c7b174ac5b144be0ebb81023ac305172eed0b9162ff42b6b3</citedby><cites>FETCH-LOGICAL-c622t-7fd77741c49c36e4c7b174ac5b144be0ebb81023ac305172eed0b9162ff42b6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23768950$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23768950$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24497508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, G-One</creatorcontrib><creatorcontrib>Seita, Jun</creatorcontrib><creatorcontrib>Hong, Beom-Ju</creatorcontrib><creatorcontrib>Kim, Young-Eun</creatorcontrib><creatorcontrib>Bok, Seoyeon</creatorcontrib><creatorcontrib>Lee, Chan-Ju</creatorcontrib><creatorcontrib>Kim, Kwang Soon</creatorcontrib><creatorcontrib>Lee, Jerry C.</creatorcontrib><creatorcontrib>Leeper, Nicholas J.</creatorcontrib><creatorcontrib>Cooke, John P.</creatorcontrib><creatorcontrib>Kim, Hak Jae</creatorcontrib><creatorcontrib>Kim, Il Han</creatorcontrib><creatorcontrib>Weissman, Irving L.</creatorcontrib><creatorcontrib>Brownb, J. Martin</creatorcontrib><title>Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel–Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1–activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.</description><subject>Analysis of Variance</subject><subject>Angiogenesis</subject><subject>animal models</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>blood flow</subject><subject>Blood vessels</subject><subject>Blotting, Western</subject><subject>Bone marrow</subject><subject>Calgranulin A - metabolism</subject><subject>Collagen</subject><subject>Crosses, Genetic</subject><subject>DNA Primers - genetics</subject><subject>Drug Combinations</subject><subject>Endothelial cells</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>erythema</subject><subject>Flow Cytometry</subject><subject>genes</subject><subject>Hindlimb - blood supply</subject><subject>humans</subject><subject>Hypoxia</subject><subject>hypoxia-inducible factor 1</subject><subject>Hypoxia-Inducible Factor 1 - metabolism</subject><subject>Ischemia</subject><subject>Ischemia - physiopathology</subject><subject>knockout mutants</subject><subject>Laminin</subject><subject>Macrophages</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Monocytes</subject><subject>Mutation</subject><subject>Myeloid cells</subject><subject>Myeloid Cells - metabolism</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Polymerase Chain Reaction</subject><subject>Proteoglycans</subject><subject>Rodents</subject><subject>transcription (genetics)</subject><subject>transcriptional activation</subject><subject>Transcriptional Activation - genetics</subject><subject>Transcriptional Activation - physiology</subject><subject>vascular diseases</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>vascular endothelial growth factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhSMEokvhzAmwxKUc0s7YThxfkKqq21aqxKEtV8txnKxX2TjYScWe-OskbNkWLr3YsuabpzfjlyTvEY4RBDvpOx2PkVGgnCHii2SBIDHNuYSXyQKAirTglB8kb2JcA4DMCnidHFDOpcigWCS_boPuogmuH5zvdEu0Gdy9nh_E12S17f1Pp1PXVaNxZWtJPQE-pEiOLq-WKX4hriObrW29q4ixbRtJH_zGDzYS3TXON7az0UUyrIIfmxX5fn6xnCoVuUGA0-Jt8qrWbbTvHu7D5G55fnt2mV5_u7g6O71OTU7pkIq6EkJwNFwalltuRImCa5OVyHlpwZZlgUCZNgwyFNTaCkqJOa1rTsu8ZIfJ151uP5YbWxnbDUG3qg9uo8NWee3Uv5XOrVTj7xWTjEqQk8DRg0DwP0YbB7VxcR5Yd9aPUWEBDDlykT-PZkgZzdl0Po8C5AVjDCb083_o2o9h-rI_FOYgoZhtnuwoE3yMwdb7ERHUHBk1R0Y9Rmbq-Ph0M3v-b0aeAHPnXg5RCUVzOQMfdsA6TtF4FGAiL2Q2O_-0q9faK90EF9XdDZ0tA7KJkOw3CvnYqA</recordid><startdate>20140218</startdate><enddate>20140218</enddate><creator>Ahn, G-One</creator><creator>Seita, Jun</creator><creator>Hong, Beom-Ju</creator><creator>Kim, Young-Eun</creator><creator>Bok, Seoyeon</creator><creator>Lee, Chan-Ju</creator><creator>Kim, Kwang Soon</creator><creator>Lee, Jerry C.</creator><creator>Leeper, Nicholas J.</creator><creator>Cooke, John P.</creator><creator>Kim, Hak Jae</creator><creator>Kim, Il Han</creator><creator>Weissman, Irving L.</creator><creator>Brownb, J. Martin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140218</creationdate><title>Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8</title><author>Ahn, G-One ; Seita, Jun ; Hong, Beom-Ju ; Kim, Young-Eun ; Bok, Seoyeon ; Lee, Chan-Ju ; Kim, Kwang Soon ; Lee, Jerry C. ; Leeper, Nicholas J. ; Cooke, John P. ; Kim, Hak Jae ; Kim, Il Han ; Weissman, Irving L. ; Brownb, J. Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-7fd77741c49c36e4c7b174ac5b144be0ebb81023ac305172eed0b9162ff42b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis of Variance</topic><topic>Angiogenesis</topic><topic>animal models</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>blood flow</topic><topic>Blood vessels</topic><topic>Blotting, Western</topic><topic>Bone marrow</topic><topic>Calgranulin A - metabolism</topic><topic>Collagen</topic><topic>Crosses, Genetic</topic><topic>DNA Primers - genetics</topic><topic>Drug Combinations</topic><topic>Endothelial cells</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>erythema</topic><topic>Flow Cytometry</topic><topic>genes</topic><topic>Hindlimb - blood supply</topic><topic>humans</topic><topic>Hypoxia</topic><topic>hypoxia-inducible factor 1</topic><topic>Hypoxia-Inducible Factor 1 - metabolism</topic><topic>Ischemia</topic><topic>Ischemia - physiopathology</topic><topic>knockout mutants</topic><topic>Laminin</topic><topic>Macrophages</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Monocytes</topic><topic>Mutation</topic><topic>Myeloid cells</topic><topic>Myeloid Cells - metabolism</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Polymerase Chain Reaction</topic><topic>Proteoglycans</topic><topic>Rodents</topic><topic>transcription (genetics)</topic><topic>transcriptional activation</topic><topic>Transcriptional Activation - genetics</topic><topic>Transcriptional Activation - physiology</topic><topic>vascular diseases</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>vascular endothelial growth factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, G-One</creatorcontrib><creatorcontrib>Seita, Jun</creatorcontrib><creatorcontrib>Hong, Beom-Ju</creatorcontrib><creatorcontrib>Kim, Young-Eun</creatorcontrib><creatorcontrib>Bok, Seoyeon</creatorcontrib><creatorcontrib>Lee, Chan-Ju</creatorcontrib><creatorcontrib>Kim, Kwang Soon</creatorcontrib><creatorcontrib>Lee, Jerry C.</creatorcontrib><creatorcontrib>Leeper, Nicholas J.</creatorcontrib><creatorcontrib>Cooke, John P.</creatorcontrib><creatorcontrib>Kim, Hak Jae</creatorcontrib><creatorcontrib>Kim, Il Han</creatorcontrib><creatorcontrib>Weissman, Irving L.</creatorcontrib><creatorcontrib>Brownb, J. Martin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, G-One</au><au>Seita, Jun</au><au>Hong, Beom-Ju</au><au>Kim, Young-Eun</au><au>Bok, Seoyeon</au><au>Lee, Chan-Ju</au><au>Kim, Kwang Soon</au><au>Lee, Jerry C.</au><au>Leeper, Nicholas J.</au><au>Cooke, John P.</au><au>Kim, Hak Jae</au><au>Kim, Il Han</au><au>Weissman, Irving L.</au><au>Brownb, J. Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-02-18</date><risdate>2014</risdate><volume>111</volume><issue>7</issue><spage>2698</spage><epage>2703</epage><pages>2698-2703</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel–Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1–activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24497508</pmid><doi>10.1073/pnas.1320243111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (7), p.2698-2703
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1501609089
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Analysis of Variance
Angiogenesis
animal models
Animals
Biological Sciences
blood flow
Blood vessels
Blotting, Western
Bone marrow
Calgranulin A - metabolism
Collagen
Crosses, Genetic
DNA Primers - genetics
Drug Combinations
Endothelial cells
Enzyme-Linked Immunosorbent Assay
erythema
Flow Cytometry
genes
Hindlimb - blood supply
humans
Hypoxia
hypoxia-inducible factor 1
Hypoxia-Inducible Factor 1 - metabolism
Ischemia
Ischemia - physiopathology
knockout mutants
Laminin
Macrophages
Mice
Mice, Transgenic
Monocytes
Mutation
Myeloid cells
Myeloid Cells - metabolism
Neovascularization, Physiologic - physiology
Polymerase Chain Reaction
Proteoglycans
Rodents
transcription (genetics)
transcriptional activation
Transcriptional Activation - genetics
Transcriptional Activation - physiology
vascular diseases
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - metabolism
vascular endothelial growth factors
title Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20activation%20of%20hypoxia-inducible%20factor-1%20(HIF-1)%20in%20myeloid%20cells%20promotes%20angiogenesis%20through%20VEGF%20and%20S100A8&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ahn,%20G-One&rft.date=2014-02-18&rft.volume=111&rft.issue=7&rft.spage=2698&rft.epage=2703&rft.pages=2698-2703&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1320243111&rft_dat=%3Cjstor_proqu%3E23768950%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1501609089&rft_id=info:pmid/24497508&rft_jstor_id=23768950&rfr_iscdi=true