In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2014-02, Vol.167 (2), p.1, Article 976
Hauptverfasser: Masotta, M., Ni, H., Keppler, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 1
container_title Contributions to mineralogy and petrology
container_volume 167
creator Masotta, M.
Ni, H.
Keppler, H.
description Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (
doi_str_mv 10.1007/s00410-014-0976-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1501547835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A365071239</galeid><sourcerecordid>A365071239</sourcerecordid><originalsourceid>FETCH-LOGICAL-a553t-a772271cdb23ff3bb5abb188212c9e5e2e678d31426460ace6c918e9e88ba3643</originalsourceid><addsrcrecordid>eNp1kV1LNCEYhiXeoH2rH9CZ0GlTfoyjHkb0BUEQdSzqPLMZs1o6W_Tvc9uggg0P9NbrUuRG6ICSY0qIPCmEtJQ0hLYN0bJr1Baa0Zazmjr5D80IqadSa72D_pfyRGpWWszQ3XXEJUxLnFyB_GqnkGLBacBu6dwIeJ7T2_SIQ8TOFjtOwR9hG3uoTvCrFc6P76m3_jMvYJzKHtoe7Fhg_2veRQ8X5_dnV83N7eX12elNY4XgU2OlZExS3zvGh4E7J6xzVClGmdcggEEnVc9py7q2I9ZD5zVVoEEpZ3nX8l10uL73OaeXJZTJPKVljvVJQwWhopWKi29qbkcwIQ5pytYvQvHmlHeCSMq4rlSzgZpDhGzHFGEIdfsXf7yBr6OHRfAbBboWfE6lZBjMcw4Lm98NJWbVoFk3aGqDZtWgUdVha6dUNs4h__jgn9IHCuCbyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501547835</pqid></control><display><type>article</type><title>In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts</title><source>SpringerLink Journals</source><creator>Masotta, M. ; Ni, H. ; Keppler, H.</creator><creatorcontrib>Masotta, M. ; Ni, H. ; Keppler, H.</creatorcontrib><description>Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (&lt;60 MPa in basalt and andesite, 200 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate ( G R ) ranges from 3.4 × 10 −6 to 5.2 × 10 −7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density ( N B ) at nucleation ranges from 7.9 × 10 4 mm −3 to 1.8 × 10 5 mm −3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and explosive eruptions.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-014-0976-8</identifier><identifier>CODEN: CMPEAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Basalt ; Bubbles ; Coalescence ; Crystallization ; Crystals ; Degassing ; Earth and Environmental Science ; Earth Sciences ; Gases ; Geology ; High temperature ; Magma ; Mineral Resources ; Mineralogy ; Nucleation ; Original Paper ; Petrology ; Physical properties ; Solid solutions ; Supersaturation ; Volcanoes</subject><ispartof>Contributions to mineralogy and petrology, 2014-02, Vol.167 (2), p.1, Article 976</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a553t-a772271cdb23ff3bb5abb188212c9e5e2e678d31426460ace6c918e9e88ba3643</citedby><cites>FETCH-LOGICAL-a553t-a772271cdb23ff3bb5abb188212c9e5e2e678d31426460ace6c918e9e88ba3643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-014-0976-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-014-0976-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Masotta, M.</creatorcontrib><creatorcontrib>Ni, H.</creatorcontrib><creatorcontrib>Keppler, H.</creatorcontrib><title>In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (&lt;60 MPa in basalt and andesite, 200 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate ( G R ) ranges from 3.4 × 10 −6 to 5.2 × 10 −7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density ( N B ) at nucleation ranges from 7.9 × 10 4 mm −3 to 1.8 × 10 5 mm −3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and explosive eruptions.</description><subject>Basalt</subject><subject>Bubbles</subject><subject>Coalescence</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Degassing</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Gases</subject><subject>Geology</subject><subject>High temperature</subject><subject>Magma</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Nucleation</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Physical properties</subject><subject>Solid solutions</subject><subject>Supersaturation</subject><subject>Volcanoes</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kV1LNCEYhiXeoH2rH9CZ0GlTfoyjHkb0BUEQdSzqPLMZs1o6W_Tvc9uggg0P9NbrUuRG6ICSY0qIPCmEtJQ0hLYN0bJr1Baa0Zazmjr5D80IqadSa72D_pfyRGpWWszQ3XXEJUxLnFyB_GqnkGLBacBu6dwIeJ7T2_SIQ8TOFjtOwR9hG3uoTvCrFc6P76m3_jMvYJzKHtoe7Fhg_2veRQ8X5_dnV83N7eX12elNY4XgU2OlZExS3zvGh4E7J6xzVClGmdcggEEnVc9py7q2I9ZD5zVVoEEpZ3nX8l10uL73OaeXJZTJPKVljvVJQwWhopWKi29qbkcwIQ5pytYvQvHmlHeCSMq4rlSzgZpDhGzHFGEIdfsXf7yBr6OHRfAbBboWfE6lZBjMcw4Lm98NJWbVoFk3aGqDZtWgUdVha6dUNs4h__jgn9IHCuCbyQ</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Masotta, M.</creator><creator>Ni, H.</creator><creator>Keppler, H.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>20140201</creationdate><title>In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts</title><author>Masotta, M. ; Ni, H. ; Keppler, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a553t-a772271cdb23ff3bb5abb188212c9e5e2e678d31426460ace6c918e9e88ba3643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Basalt</topic><topic>Bubbles</topic><topic>Coalescence</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Degassing</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Gases</topic><topic>Geology</topic><topic>High temperature</topic><topic>Magma</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Nucleation</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Physical properties</topic><topic>Solid solutions</topic><topic>Supersaturation</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masotta, M.</creatorcontrib><creatorcontrib>Ni, H.</creatorcontrib><creatorcontrib>Keppler, H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masotta, M.</au><au>Ni, H.</au><au>Keppler, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>167</volume><issue>2</issue><spage>1</spage><pages>1-</pages><artnum>976</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><coden>CMPEAP</coden><abstract>Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (&lt;60 MPa in basalt and andesite, 200 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate ( G R ) ranges from 3.4 × 10 −6 to 5.2 × 10 −7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density ( N B ) at nucleation ranges from 7.9 × 10 4 mm −3 to 1.8 × 10 5 mm −3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and explosive eruptions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-014-0976-8</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2014-02, Vol.167 (2), p.1, Article 976
issn 0010-7999
1432-0967
language eng
recordid cdi_proquest_journals_1501547835
source SpringerLink Journals
subjects Basalt
Bubbles
Coalescence
Crystallization
Crystals
Degassing
Earth and Environmental Science
Earth Sciences
Gases
Geology
High temperature
Magma
Mineral Resources
Mineralogy
Nucleation
Original Paper
Petrology
Physical properties
Solid solutions
Supersaturation
Volcanoes
title In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20observations%20of%20bubble%20growth%20in%20basaltic,%20andesitic%20and%20rhyodacitic%20melts&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Masotta,%20M.&rft.date=2014-02-01&rft.volume=167&rft.issue=2&rft.spage=1&rft.pages=1-&rft.artnum=976&rft.issn=0010-7999&rft.eissn=1432-0967&rft.coden=CMPEAP&rft_id=info:doi/10.1007/s00410-014-0976-8&rft_dat=%3Cgale_proqu%3EA365071239%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1501547835&rft_id=info:pmid/&rft_galeid=A365071239&rfr_iscdi=true